

Plan 216 Ing.Tec.Ind. Esp en Química Ind.

Asignatura 16264 ANALISIS QUIMICO INDUSTRIAL

Grupo 1

Presentación	
Programa Básico	

Objetivos

- Complementar la formación analítica obtenida en las asignaturas troncales de 2º curso "Análisis Químico" y "Técnicas Instrumentales de Análisis", especialmente en aquellas técnicas de mayor aplicación en laboratorios químicos industriales. - Desarrollar la metodología para abordar el análisis químico de muestras reales de interés industrial. - Conocer los métodos analíticos para algunos materiales industriales de uso más frecuente.

Programa de Teoría

I. METODOLOGÍA DEL ANÁLISIS QUÍMICO INDUSTRIAL

TEMA 1. ANÁLISIS DE MUESTRAS REALES

Análisis de muestras reales. Elección del método para analizar muestras reales. Empleo de la bibliografía. Exactitud alcanzable en el análisis de materiales complejos.

TEMA 2. TOMA DE MUESTRAS

Muestreo: Precauciones generales. Tipos de muestreo. Tamaño de muestra. Muestreo de sólidos. Muestreo de líquidos. Muestreo de gases. Almacenamiento de muestras.

TEMA 3. PREPARACIÓN DE MUESTRAS PARA EL ANÁLISIS

Tratamientos físicos y químicos. Trituración y molienda. Humedad en las muestras: Secado. Disolución de muestras.

Descomposición con sólidos fundidos. Descomposición de sustancias orgánicas. Eliminación de interferencias.

Preconcentración. Contaminación de las muestras.

TEMA 4. OBTENCIÓN DE AGUA DE CALIDAD INSTRUMENTAL

Contaminantes del agua: Técnicas de depuración. Osmosis inversa. Carbono activado. Resinas de intercambio iónico. Fotooxidación. Ultrafiltración. Medida de la resistividad del agua.

II. COMPLEMENTO DE TÉCNICAS ANALÍTICAS DE APLICACIÓN INDUSTRIAL

TEMA 5. ESPECTROMETRÍA DE MASAS

Fundamentos. El espectrómetro de masas. Sistemas de entrada de muestra. Detectores. Fuentes de iones.

Analizadores de masas. Control del instrumento y adquisición de datos. Identificación de compuestos.

TEMA 6. ESPECTROSCOPÍA DE INFRARROJO

Correlación de los espectros de IR con la estructura molecular. Instrumentación. Manipulación de la muestra. Análisis cuantitativo.

TEMA 7. ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR

Luminiscencia. Fluorescencia. Instrumentación para la medida de fluorescencia. Aplicaciones. Quimioluminiscencia. TEMA 8. MÉTODOS DE RAYOS X

Métodos de Rayos X. Principios fundamentales. Instrumentos de Rayos X. Fluorescencia de Rayos X. Microsonda electrónica. Aplicaciones.

TEMA 9. MÉTODOS DE DISPERSIÓN DE LA LUZ: TURBIDIMETRÍA Y NEFELOMETRÍA.

Turbidimetría y nefelometría. Reflexión y dispersión. Variables que afectan a las medidas. Instrumentación. Aplicaciones.

TEMA 10. MEDICIÓN DEL COLOR: FOTOMETRÍA DE REFLECTANCIA DIFUSA.

Introducción. Reflectancia. Fotómetros y densitómetros de reflectancia. Aplicaciones.

III. ANÁLISIS DE MATERIALES INDUSTRIALES

TEMA 11. ANÁLISIS DE LUBRICANTES

Lubricación. Características físicas de los lubricantes. Propiedades térmicas. Características químicas de aceites y

viernes 19 junio 2015 Page 1 of 2

grasas. Análisis de aceites en uso.

TEMA 12. ANÁLISIS DE COMBUSTIBLES

Características generales. Toma de muestras. Características físicas. Poder calorífico. Punto de inflamación. Residuo carbonoso. Características químicas. Análisis del combustible.

TEMA 13. ANÁLISIS DE METALES Y ALEACIONES

Aceros: Clasificación. Componentes no metálicos en los aceros. Determinación de fósforo, azufre, silicio, carbono y manganeso en aceros. Aleaciones de aluminio: Determinación de sus componentes.

TEMA 14. ANÁLISIS DE MATERIALES CALIZOS Y SILÍCEOS

Análisis de rocas carbonatadas. Análisis de rocas silicatadas y silicatos. Análisis de minerales metálicos. Método de ensayo de cementos.

TEMA 15. AGENTES TENSIOACTIVOS

Constitución química de los tensioactivos: Tipos. Formulaciones detergentes. Determinación de los principales componentes. Evaluación de la eficacia. Evaluación de la .seguridad ambiental de los detergentes.

Programa Práctico

- Determinación de carbono en aceros
- Determinación de fluoruro soluble (en pasta de dientes) mediante electrodos selectivos
- Determinación de ácido acetilsalicílico en una tableta de analgésico por espectroscopía UV-vis.
- Determinación de sulfatos en agua por turbidimetría
- Determinación de calcio en cementos por espectroscopía de emisión atómica
- Refractometría: composición de una mezcla binaria de disolventes
- Polarimetría: composición de mezclas de sacarosa con otras sustancias
- Determinación de manganeso en un acero por espectrofotometría de absorción atómica.
- Índice de acidez total en aceites lubricantes
- Cenizas en aceites lubricantes

Evaluación

- Examen ordinario, al final del cuatrimestre con cuestiones técnicas o de aplicación, sobre el contenido del programa.
- En la evaluación se tendrá en cuenta la labor desarrollada por el alumno en las prácticas de laboratorio. El examen extraordinario será del mismo tipo que el ordinario.

Bibliografía

- * ROUESSAC "Análisis Químico. Métodos y Técnicas Instrumentales Modernas". McGraw-Hill. 2003.
- * SKOOG-WEST-HOLLER "Química Analítica", McGraw-Hill 6ª Ed. 1995.
- * SKOOG-LEARY "Análisis Instrumental". McGraw-Hill 4ª Ed. 1993.
- * BERMEJO "Química Analítica General, Cuantitativa e Instrumental". Paraninfo 2 Vol. 6ª Ed. 1991.
- * WILLARD-MERRITT-DEAN-SETTLE "Métodos Instrumentales de Análisis". G.E. Iberoamérica. 1991.
- * La información sobre temas específicos se obtiene de monografías y de las normas oficiales.

viernes 19 junio 2015 Page 2 of 2