

Plan 277 Lic. en Física

Asignatura 44062 FISICA DE DIELECTRICOS

Grupo 1

Presentación

Dieléctricos en campos estáticos y variables. Respuesta en el dominio del tiempo y de la frecuencia. Pérdidas. Polarización dipolar, iónica, electrónica e interfacial. Relajación y resonancia. Efectos no lineales. Piezoelectricidad. Ferroelectricidad. Conducción en gases. Ruptura dieléctrica. Aplicaciones.

Programa Básico

- Introducción a la teoría de dieléctricos.
- Modelos de polarizabilidad y campo local.
- Teorías de la permitividad estática y dinámica.
- Ferroelectricidad.
- Piezoelectricidad y piroelectricidad.
- Ruptura dieléctrica.
- Medida de las propiedades dieléctricas.

Objetivos

Programa de Teoría

- 1- Introducción a la teoría de dieléctricos:
 - Desarrollo multipolar: dipolos eléctricos.
 - Caracterización de los materiales dieléctricos.
 - Mecanismos de polarización.
 - Los problemas de la teoría de dieléctricos.
- 2- Dieléctrico en un campo armónico:
 - Susceptibilidad y permitividad compleja.
 - Tratamiento formal: función respuesta.
 - Curvas de dispersión dieléctrica.
 - Relaciones de Kramers-Kronig.
- 3- Polarizabilidad:
 - Polarización por distorsión.
 - Polarización por orientación.
 - Polarización interfacial.
 - Momento dipolar y estructura molecular.
- 4- Campo local:
 - Introducción: modelo de fases diluidas.
 - Campo local de Lorentz.
 - Campo local de Onsager.
 - Teorías estadísticas.
- 5- Teorías de la permitividad estática:
 - Permitividad dieléctrica de fases diluidas.
 - Permitividad dieléctrica en la materia condensada.
 - Introducción a las teorías estadísticas.
 - Efecto Kerr electro-óptico.
- 6- Teorías de la permitividad dinámica: baja frecuencia.
- Procesos de relajación: modelo de Debye.

lunes 22 junio 2015 Page 1 of 2

- Relajación dipolar.
- Relajación interfacial.
- Relajaciones en sistemas complejos.
- 7- Teorías de la permitividad dinámica: alta frecuencia.
 - Procesos de resonancia: modelo de Lorentz.
 - Polarización electrónica: modelo del oscilador armónico.
 - Polarización iónica: estados de vibración de una red.

8- Ferroelectricidad:

- Introducción: materiales representativos.
- Teorías fenomenológicas.
- Modelos microscópicos.
- Aplicaciones.

9- Piezoelectricidad y Piroelectricidad:

- Dieléctricos cristalinos: caracterización eléctrica y mecánica.
- Piezoelectricidad.
- Piroelectricidad.
- Aplicaciones.

10- Ruptura Dieléctrica:

- Introducción: mecanismos de ruptura.
- Ruptura térmica.
- Procesos intrínsecos: ruptura electrónica e iónica.

11- Medida de las Propiedades Dieléctricas:

- Circuitos equivalentes.
- Medidas en el dominio de la frecuencia.
- Medidas en el dominio del tiempo.
- Medida del campo de ruptura.

Programa Práctico

Evaluación

Bibliografía

- * ALBELLA, J.M. y MARTÍNEZ, J.M.: "Física de Dieléctricos", Marcombo, Barcelona 1984.
- * BLEANEY, B.I. Y BLANEY, B.: "Electricity and Magnetism", Oxford University Press, London 1965.
- * COELHO, R.: "Physics of Dielectrics for Engineer", Elsevier, Amsterdam 1979.
- * CHELKOWSKY, A.: "Dielectrics Physics", Elsevier, Amsterdam 1980.
- * FRÖLICH, H.: "Theory of Dielectrics", Oxford University Press, London 1968.
- * HILL, N.E.: "Dielectrics Properties and Molecular Behaviour", Van Nostrand, London 1969.
- * JONA, F.: "Ferroelectric Crystals", Dover, New York, 1993.
- * KITTEL, C.: "Introduction to Solid State Physics", 4ª Edición, John Wiley, New York 1971.
- * PORTIS, A.M.: "Electromagnetic Fields: Sources and Media", John Wiley & Sons, 1978.
- * ROBERT, P.: "Matériaux de l'électrotechnique", Dunod, París 1979.
- * SOLYMAR, L. y WALSH, D.: "Lectures on the Electrical Properties of Materials", 3ª Edición, Oxford University Press 1984.

lunes 22 junio 2015 Page 2 of 2