

Plan 210 Ing. Ind.

Asignatura 16095 REACTORES QUIMICOS

Grupo 1

Presentación

Cinética de reacciones homogéneas y heterogéneas. Catálisis. Reactores ideales y reales. Reactores homogéneos y heterogéneos. Estabilidad.

Programa Básico

Objetivos

Desarrollar los fundamentos de cinética de reacciones homogéneas y heterogéneas. Inicio en el análisis y diseño de reactores químicos.

Programa de Teoría

- I. Ingeniería de la Reacción Química
- 1. Introducción

Conceptos básicos. Clasificación de reacciones. Tipos de reactores químicos. Termodinámica del equilibrio. Energía calorífica intercambiada. Ecuaciones de diseño.

- II. Reacciones Homogéneas
- 2. Cinética de las reacciones Homogéneas (1)

Reacciones simples y complejas. Estequiometría y Conversión. Sistemas de volumen variable.

3. Cinética de las reacciones Homogéneas (2)

Velocidad de reacción. Variables de las que depende la velocidad de reacción. Análisis de datos cinéticos: evaluación del orden y de la constante de reacción.

4. Reactores homogéneos (1)

Reactor discontinuo de tanque agitado: diseño y optimización. Reactor semicontinuo con alimentación.Reactor continuo de tanque agitado. Reactores en serie. Análisis de estabilidad.

5. Reactores homogéneos (2)

Reactor tubular: diseño y análisis de estabilidad.Combinación de reactores. Estudio de reacciones complejas: optimización.

- III. Modelos de Flujo
- 5. Aplicación a reacción Química

Funciones de distribución de edad. Caracterización del flujo no-ideal. Modelos simples y combinados. Concepto de macromezcla. Evaluación de la conversión.

- IV. Reacciones Heterogéneas
- 6. Cinética de reacciones heterogéneas (1)

Reacciones catalíticas. Características de los catalizadores. Velocidad global de reacción: etapa controlante. Análisis de datos cinéticos.

7 . Cinética de reacciones heterogéneas (2)

Reacciones gas-líquido no catalíticas. Teoría de película. Velocidad global de reacción. Reacciones gas-líquido catalizadas por sólidos. Modelos cinéticos para catalizador en suspensión y en lecho fijo.

8. Reactores heterogéneos.

Reactores catalíticos. Modelo básico unidimensional. Análisis de estabilidad.

Reactores gas-líquido. Reactores de tanque. Reactores de torre.

viernes 19 junio 2015 Page 1 of 2

Programa Práctico

Se resolverán problemas prácticos en el aula al final de cada tema del programa de la asignatura.

Evaluación

Presentación de trabajos: A lo largo del cuatrimestre se propondrán distintas tareas (trabajos prácticos), a realizar de forma individual o en grupos de un máximo de tres alumnos, de las que se elaborará una memoria que se expondrá en clase el día asignado. La contribución de estos trabajos a la nota final será del 30%.

Examen escrito: Constará de una parte práctica consistente en la resolución de un problema en un tiempo máximo de 2:30 h y de una parte teórica con un máximo de seis cuestiones que deberán contestarse en un tiempo no superior a 1 h.

Para el ejercicio práctico se podrá contar con todo el material que los alumnos consideren necesario (apuntes, libros, etc.). La realización de la parte teórica se llevará a cabio sin ningún tipo de documentación de apoyo.

La nota del examen escrito supondrá un 70% de la nota final (exigencia de nota mínima).

Bibliografía

- H.S. Fogler. Elements of Chemical Reaction Engineering. Prentice-Hall. 1992
- G.F. Froment, K.B. Bischoff. ChemicalReactor Analysis and Design. Wiley. 1990
- C.D. Holland. Fundamentals of Chemical Reaction Engineering. Prentice-Hall. 1989
- J.M. Santamaría, J. Herguido, M.A. Menéndez, A. Monzón. Ingeniería de Reactores. Síntesis. 1999 J.R. González Velasco, J.A. González Marcos. Cinética Química Aplicada. Síntesis. 1999

viernes 19 junio 2015 Page 2 of 2