

Plan 277 Lic. en Física

Asignatura 44067 INSTRUMENTACION NUCLEAR

Grupo 1

Presentación

Aplicaciones de la Física Nuclear: industria, investigación interdisciplinar y medicina. Física de neutrones. Reactores nucleares. Radiaciones ionizantes. Detectores.

Programa Básico

- 1. ¿Que es y para que sirve la instrumentación nuclear? Usos y produccion de las radiaciones y reacciones nucleares. Detectores, reactores y aceleradores. Producción de energía eléctrica. Radiodiagnóstico medico. Radioterapia. Investigación: Fisica Nuclear, Arqueometría, Ciencia de materiales, Biología......
- 2. Conceptos basicos en reactores de fision.

Fisión inducida por neutrones. Fuentes de neutrones. Criticidad y control. Combustibles. Tipos de reactores. Reactores de potencia.

3. Interacciones de los neutrones con la materia

Sección eficaz y velocidad de ocurrencia de las reacciones. Moderación neutrónica: neutrones rápidos, epitérmicos y térmicos. Captura y activación neutrónica de los materiales.

4. Transporte neutronico

Métodos determinista y Montecarlo. Aproximación de la difusión: flujo y corriente. Criticidad de un reactor homogéneo. Criticidad de un reactor de varias regiones homogéneas.

5. Dinamica del reactor

Neutrones instantáneos y retardados. Ecuaciones dinámicas. Transitorio producido por un salto de reactividad. Realimentación térmica.

6. Evolucion isotopica del combustible

Ecuaciones para flujo constante. Estudio del veneno 135 Xe.

7. Respuesta de un medio a la radiación que lo atraviesa

lonización y excitación atómica. Fórmula de Bethe-Bloch. Radiación de frenado. Producción de pares. Mecanismos indirectos de ionización para neutrones.

8. Caracteristicas generales de los detectores

Cargas libres producidas: registro por corriente eléctrica y por impulsos. Eficiencia. Resolución. Tiempo muerto.

9. Detectores de gas

Dependencia de la amplitud del impulso con la tensión externa: cámara de ionización, detector proporcional, detector Geiger.

10. Detectores de centelleo y de semiconductores

Centelleadores y fotomultiplicadores. Tipos de detectores semiconductores. Espectros gamma con cristales de loduro de Sodio y de Germanio. Espectrometría alfa con detectores de Silicio.

11. Detectores termoluminiscentes

La curva de brillo. Calentamiento en modos salto y rampa. Estudio del Fluoruro de Litio dopado con Mg y Ti.

Respuesta en campos mixtos alfa-gamma y neutrón gamma. Datación por termoluminiscencia.

12. Dosimetria de radiaciones

Exposición. Dosis absorbida. Dosis equivalente. Legislación.

Objetivos

Además de obtener una comprensión de los fenómenos básicos y las limitaciones de las teorías empleadas, se obtendrán habilidades para caracterizar campos de radiación en torno a instalaciones, para decidir que detector es el más apropiadoo y se obtendrá destreza en su manejo.

Se practicará la presentación de un trabajo a modo de: resumen, introducción, materiales y métodos, resultados y conclusiones tomando para ello una práctica de laboratorio, una visita a una instalación...etc. en los que el alumno haya realizado alguna contribución propia ya sea individualmente o en equipo.

viernes 19 junio 2015 Page 1 of 3

Programa de Teoría

- 1. ¿Que es y para que sirve la instrumentación nuclear? Usos y produccion de las radiaciones y reacciones nucleares. Detectores, reactores y aceleradores. Producción de energía eléctrica. Radiodiagnóstico medico. Radioterapia. Investigación: Fisica Nuclear, Arqueometría, Ciencia de materiales, Biología......
- 2. Conceptos basicos en reactores de fision.

Fisión inducida por neutrones. Fuentes de neutrones. Criticidad y control. Combustibles. Tipos de reactores. Reactores de potencia.

3. Interacciones de los neutrones con la materia

Sección eficaz y velocidad de ocurrencia de las reacciones. Moderación neutrónica: neutrones rápidos, epitérmicos y térmicos. Captura y activación neutrónica de los materiales.

4. Transporte neutronico

Métodos determinista y Montecarlo. Aproximación de la difusión: flujo y corriente. Criticidad de un reactor homogéneo. Criticidad de un reactor de varias regiones homogéneas.

5. Dinamica del reactor

Neutrones instantáneos y retardados. Ecuaciones dinámicas. Transitorio producido por un salto de reactividad. Realimentación térmica.

6. Evolucion isotopica del combustible

Ecuaciones para flujo constante. Estudio del veneno 135 Xe.

7. Respuesta de un medio a la radiación que lo atraviesa

lonización y excitación atómica. Fórmula de Bethe-Bloch. Radiación de frenado. Producción de pares. Mecanismos indirectos de ionización para neutrones.

8. Caracteristicas generales de los detectores

Cargas libres producidas: registro por corriente eléctrica y por impulsos. Eficiencia. Resolución. Tiempo muerto.

9. Detectores de gas

Dependencia de la amplitud del impulso con la tensión externa: cámara de ionización, detector proporcional, detector Geiger.

10. Detectores de centelleo y de semiconductores

Centelleadores y fotomultiplicadores. Tipos de detectores semiconductores. Espectros gamma con cristales de loduro de Sodio y de Germanio. Espectrometría alfa con detectores de Silicio.

11. Detectores termoluminiscentes

La curva de brillo. Calentamiento en modos salto y rampa. Estudio del Fluoruro de Litio dopado con Mg y Ti. Respuesta en campos mixtos alfa-gamma y neutrón gamma. Datación por termoluminiscencia.

12. Dosimetria de radiaciones

Exposición. Dosis absorbida. Dosis equivalente. Legislación.

Programa Práctico

En el laboratorio integrado:

- 1. Visualización con el osciloscopio de los impulsos producidos por las radiaciones ionizantes.
- 2. Equilibrio secular 137Cs-137Ba y vida media del 137Ba
- 3. Alcance de partículas beta en materiales con detector Geiger-Muller (blindajes)
- 4. Absorción de radiación gamma en materiales con detector de centelleo (blindajes)
- 5. Espectroscopía gamma con centelleador de NaI(TI).
- 7. Espectroscopía alfa con detectores de Silicio.
- 8. Irradiación con alfas de detectores de trazas CR39, revelado y observación al microscopio
- 9. Estudio(sin medidas) de equipos de detección y espectrometría neutrónicas.
- 10. Irradiación del LiF:Mg,Ti en el campo mixto alfa-gamma del 241Am y análisis de la curva de termoluminiscencia.

Evaluación

Examen escrito en el que se puede consultar todo tipo de bibliografía. También se valorará el trabajo que el alumno realice durante el curso.

Bibliografía

- K. Almenas y R. Lee, "Nuclear engineering: an introduction"
- R. Caro. "Física de los reactores nucleares"
- R. Caro, "Historia nuclear de España"
- R. Caro, "Aceleradores"
- A. Ferrer, M. Shaw y A. Williart, "Física Nuclear"
- A. Ferrer, "Física Nuclear y Partículas"

Forum Atómico, "La irradiación de alimentos:hechos y realidades"

Forum Atómico, "Los isótopos en la vida cotidiana"

viernes 19 junio 2015 Page 2 of 3

- S. Glasstonne, "Ingeniería de reactores nucleares" G.F. Knoll, "Radiation detection and measurement" A. Tanarro, "Instrumentación Nuclear"
- N. Tsoulfanidis, "Measurement and Detection of Radiation"

viernes 19 junio 2015 Page 3 of 3