

## Plan 214 Ing.Tec.Ind. Esp en Electricidad

# Asignatura 16302 TEORIA DE MECANISMOS Y ESTRUCTURAS

### Grupo 1

#### Presentación

Estudio general del conocimiento y aplicaciones de los diversos elementos de máquinas y mecanismos.

#### Programa Básico

1º BLOQUE .- Concepto de Ingeniería.- Cinemática de los cuerpos rígidos.-

Mecanismos y máquinas.- Mecanismos de leva seguidor

2º BLOQUE .- Sistemas roscados.- Engranes y engranajes.- Trenes de

engranajes.- Transmisión por correas.-Transmisión por cadenas

3º BLOQUE .- Ejes y árboles de transmisión.- Cojinetes de fricción.-

Cojinetes de rodamientos.-

4º BLOQUE .- Equilibrado de mecanismos.- Vibraciones mecánicas.-

Electromecánica

#### Objetivos

Proporcionar al alumno una preparación suficiente,para que con los conocimientos adquiridos, pueda estar capacitado para comprender, de forma básica,el correcto funcionamiento de los elementos mecánicos que componen los mecanismos y las máquinas en general.

#### Programa de Teoría

#### TEORIA DE MECANISMOS Y ESTRUCTURAS

Programa de la Asignatura

- 1 .- Mecanismos y máquinas
  - 1.1 Definición de mecanismo y máquina
  - 1.2 .- Movimiento de traslación, rotación y plano en general.
  - 1.3 .- Eslabones, juntas y cadenas cinemáticas
    - 1.3.1 .- Concepto de eslabón.-Clasificación
    - 1.3.2 .- Par cinemático y cadena cinemática
    - 1.3.3 Juntas o elementos de enlace
  - 1.4 .- Determinación del grado de libertad
    - 1.4.1 .- Ecuación de Kutzbach
  - 1.5 .- Posiciones y trayectorias de mecanismos planos
    - 1.5.1 .- Mecanismo de cuatro barras
    - 1.5.2 .- Mecanismo de biela-manivela
    - 1.5.3 .- Angulo de transmisión
    - 1.5.4 .- Posiciones de agarrotamiento
    - 1.5.5 .- Ley de Grashof
    - 1.5.6 .- Inversiones de Grashof
    - 1.5.7 .- Mecanismos de movimiento alternativo, intermitente y de retorno rápido
- 2 .- Mecanismos de leva-seguidor
  - 2.1 .- Introducción y generalidades
  - 2.2 .- Tipos de levas
  - 2.3 .- Tipos de seguidores.-Movimientos del seguidor
  - 2.4 .- Tipo de programa de movimiento del seguidor
- 3 .- Sistemas roscados
  - 3.1 .- Conceptos generales
  - 3.2 .- Aplicaciones

viernes 19 junio 2015 Page 1 of 4

- 3.3 .- Tipos de roscas
- 3.4 .- Análisis de un husillo transmisor de fuerza o movimiento
- 3.5 .- Cálculo de la resistencia de un elemento roscado
- 3.6 .- Llaves dinamómetricas y multiplicadores de par
- 4 .- Engranes y engranajes
  - 4.1 .- Conceptos generales de trannsmisión
    - 4.1.1 .- Transmisión de movimiento de rotación por medio de engranajes
    - 4.1.2 .- Tipos de engranes
    - 4.1.3 .- Perfiles conjugados.-Perfil de evolvente
    - 4.1.4 .- Características principales del diente y de la rueda dentada
    - 4.1.5 .- Ley del engrane.-Relación de transmisión
  - 4.2 .- Engranes cilíndricos de dientes rectos
    - 4.2.1 .- Introducción
    - 4.2.2 .- Intermitencia y razón de contacto
    - 4.2.3 .- Concepto de interferencia
    - 4.2.4 .- Número mínimo de dientes
    - 4.2.5 .- Fuerzas producidas en la transmisión
  - 4.3 .- Engranes cilíndricos con dientes helicoidales
    - 4.3.1 .- Ejes paralelos de transmisión
      - 4.3.1.1 .- Paso y módulo normales
      - 4.3.1.2 .- Salto base y razón de contacto
      - 4.3.1.3 .- Fuerzas producidas en la transmisión.-Componente axial
    - 4.3.2 .- Ejes cruzados de transmisión
      - 4.3.2.1 .- Relación de los ángulos entre los ejes
  - 4.4 .- Engranes cónicos
    - 4.4.1 .- Ejes de transmisión que se cortan
      - 4.4.1.1 .- Dientes rectos y curvos
      - 4.4.1.2 .-Características dimensionales
  - 4.5 .- Engranes hipoidales
    - 4.5.1 .- Ejes de transmisión que se cruzan
  - 4.6 .- Engranaje de tornillo sinfin y rueda corona
    - 4.6.1 .- Conceptos generales
    - 4.6.2 .- Aplicaciones
- 5 .- Trenes de engranajes
  - 5.1 .- Trenes de engranajes con ejes fijos
  - 5.2 .- Trenes de engranajes con ejes móviles
  - 5.3 .- Reductores de velocidad
    - 5.3.1 .- Conceptos generales
    - 5.3.2 .- Tipos diferentes
  - 5.4 .- Variadores de velocidad
    - 5.4.1 .- Conceptos generales
    - 5.4.2 .- De velocidad escalonada
      - 5.4.2.1 .- Acoplamiento frontal de manguito
      - 5.4.2.2 .- Engranes deslizantes
      - 5.4.2.3 .- Aplicaciones en
        - máquinas
- 6 .- Transmisión por correas
  - 6.1 Conceptos generales
  - 6.2 .- Tipos existentes
  - 6.3 .- Relación de transmisión
  - 6.4 .- Transmisión de esfuerzos
  - 6.5 .- Correas trapeciales normalizadas
  - 6.6 .- Ventajas e inconvenientes

viernes 19 junio 2015 Page 2 of 4

- 7 .- Transmisión por cadenas
  - 7.1 .- Introducción
  - 7.2 .- Tipos existentes
  - 7.3 .- Relación de transmisión
  - 7.4 .- Ventajas e inconvenientes
  - 7.5 .- Lubricación
- 8.- Ejes y árboles de transmisión
  - 8.1 .- Introducción
  - 8.2 .- Diferencia entre eje y árbol de transmisión
  - 8.3 .- Tipos de árboles de transmisión
  - 8.4 .- Apoyo de árboles
  - 8.5 Análisis de resistencia
  - 8.6 .- Velocidad crítica
- 9.- Cojinetes de fricción
  - 9.1 .- Propiedades y aplicaciones
  - 9.2 .- Clasificación y tipos de cojinetes
  - 9.3 .- Tipos de lubricación
  - 9.4 .- Viscosidad y temperatura
  - 9.5 .- Carga del cojinete
  - 9.6 .- Cojinetes autolubricados
- 10.- Cojinetes de rodamientos
  - 10.1 .- Introducción
  - 10.2 .- Elementos constructivos de los rodamientos
  - 10.3 .- Clase de rodamientos
  - 10.4 .- Capacidad de carga estática y dinámica
  - 10.5 .- Duración de vida de un rodamiento
  - 10.6 .- Husillos con rodamientos de bolas
- 11.- Equilibrado de mecanismos
  - 11.1 .- Concepto de desequilibrio de mecanismos
  - 11.2 .- Efectos del desequilibrio de mecanismos
  - 11.3 .- Desequilibrio estático y dinámico
  - 11.4 .- Equilibrado de elementos rotores

#### Programa Práctico

Las prácticas de aula se basarán en el estudio y resolución de ejercicios prácticos referentes a mecanismos y elementos de máquinas.

#### Evaluación

Los exámenes, tanto el ordinario como los extraordinarios, consistirán en pruebas escritas sobre problemas y preguntas relacionadas con la asignatura, cuyo número y valor se definirán en cada caso.

Se valorará por orden de importancia:

- Claridad de conceptos fundamentales
- La metodología empleada en la resolución de problemas
- El rigor y la claridad de las exposiciones

Los errores conceptuales en cualquier ejercicio implicarán una calificación de cero, independientemente de lo expuesto en el resto del problema.

#### Bibliografía

Teoría de Máquinas y Mecanismos

Autores: Joseph Edwad Shigley y John Joseph Uicker

Diseño de Maquinaria Autor : Robert L. Norton

Análisis cinemático de mecanismos Autor: Joseph Edward Shigley

Mecánica Vectorial para Ingenieros.- Estática y Dinámica

Autores: Ferdinand Beer y E. Russell Johnston

Análisis y proyectos de Mecanismos

Autor: Deane Lent

Mecánica de Máquinas

viernes 19 junio 2015 Page 3 of 4

Autores: C.W. Ham, E.J. Crane, W.L. Rogers

Elementos de Resistencia de Materiales

Autores: Timoshenko y Young

Mecanismos y Dinámica de Maquinaria Autores: Hamilton H. Mabie y Fred W. Ocvirk

Elementos de Mecanismos

Autores: Venton Levy Doughtie y Walter H. James

Máquinas Herramienta - Engranajes

Autor: Marino Carazo López

Normas UNE

viernes 19 junio 2015 Page 4 of 4