

>>Enlace fichero guia docente

Plan 512 GRADO EN INGENIERÍA DE TECNOLOGÍAS ESPECÍFICAS DE TELECOMUNICACIÓN

Asignatura 46648 AMPLIACIÓN DE INSTRUMENTACIÓN Y EQUIPOS ELECTRÓNICOS

Tipo de asignatura (básica, obligatoria u optativa)

OBLIGATORIA DE LA MENCIÓN

Créditos ECTS

6 ECTS

Competencias que contribuye a desarrollar

2.1

Generales

- 1. GC1. Capacidad de organización, planificación y gestión del tiempo.
- 2. GC2. Capacidad para comunicar, tanto por escrito como de forma oral, conocimientos, procedimientos, resultados e ideas relacionadas con las telecomunicaciones y la electrónica.
- 3. GC3. Capacidad para trabajar en cualquier contexto, individual o en grupo, de aprendizaje o profesional, local o internacional, desde el respeto a los derechos fundamentales, de igualdad de sexo, raza o religión y los principios de accesibilidad universal, así como la cultura de paz.
- 4. GB1. Capacidad de razonamiento, análisis y síntesis.
- 5. GB2. Capacidad para relacionar conceptos y adquirir una visión integrada, evitando enfoques fragmentarios.
- 6. GB4. Capacidad para trabajar en grupo, participando de forma activa, colaborando con sus compañeros y trabajando de forma orientada al resultado conjunto.
- 7. GBE3. Capacidad para resolver problemas con iniciativa, creatividad y razonamiento crítico.
- 8. GBE4. Capacidad para diseñar y llevar a cabo experimentos, así como analizar e interpretar datos.
- 9. GE3. Capacidad para desarrollar metodologías y destrezas de aprendizaje autónomo eficiente para la adaptación y actualización de nuevos conocimientos y avances científicos.

2.2

Específicas

- 1. SE1. Capacidad de construir, explotar y gestionar sistemas de captación, transporte, representación, procesado. Almacenamiento, gestión y presentación de información multimedia, desde el punto de vista de los sistemas electrónicos.
- 2. SE2. Capacidad para seleccionar circuitos y dispositivos electrónicos especializados para la transmisión, el encaminamiento o enrutamiento y los terminales, tanto en entornos fijos como móviles.
- 3. SE3. Capacidad de realizar la especificación, implementación, documentación y puesta a punto de equipos y sistemas, electrónicos, de instrumentación y de control, considerando tanto los aspectos técnicos como las normativas reguladoras correspondientes.
- 4. SE4. Capacidad para aplicar la electrónica como tecnología de soporte en otros campos y actividades, y no sólo en el ámbito de las Tecnologías de la Información y las Comunicaciones
- 5. SE5. Capacidad de diseñar circuitos de alimentación y conversión de energía eléctrica para aplicaciones de telecomunicaciones y computación.
- 6. SE8. Capacidad para especificar y utilizar instrumentación electrónica y sistemas de medida.

Objetivos/Resultados de aprendizaje

- Conocer y analizar la arquitectura de bloques básicos de equipos generadores de señal analógicos
 - Comprender y analizar los bloques básicos y la arquitectura del contador electrónico universal en sus modos de

viernes 23 septiembre 2016 Page 1 of 4

medida de; frecuencia, periodo, anchos de pulsos e intervalo de tiempos entre eventos.

- Comprender y analizar los problemas implicados en la generación de bases de tiempos estables.
- Comprender y analizar los principios de un oscilador con cristal de cuarzo, características y limitaciones y sus aplicaciones como base de tiempos.
- Conocer y analizar los sistemas y equipos de generación de funciones digitales DDS y AWG
- Conocer y analizar los bloques básicos de la arquitectura de un analizador de Fourier y analizadores de espectros heterodinos.
- Conocer y utilizar en distintos modos de medida, en laboratorio, los equipos analizados.
- Comprender los principios de funcionamiento de los distintos elementos de conversión de energía sus limitaciones tecnológicas y aplicaciones.
- Comprender en un proceso de digitalización la relación entre frecuencia de señal, frecuencia de muestreo y las implicaciones en el almacenamiento y posterior procesamiento.
- Comprender los distintos bloques funcionales implicados en la digitalización de señales analógicas en el dominio del tiempo y de la frecuencia
- Conocer la arquitectura y características de los sistemas de instrumentación.
- Conocer la estructura del bus GPIB, VXI, LXI y PXI y software de instrumentación

Contenidos

TEMA 1: Mezcla y conversión de frecuencia

- 1.1 Objetivos
- 1.2 Circuitos no lineales: Distorsión armónica y de intermodulación
- 1.3 Mezclador simple y simétrico
- 1.4 Aplicaciones: sintonizado superheterodino
- 1.7 Resumen

TEMA 2: Contador electrónico universal

- 2.1 Objetivos
- 2.2 Introducción: contador básico
- 2.3 Modos de medida
- 2.4 Contadores para alta frecuencia
- 2.8 Resumen

TEMA 3: Bases de tiempo

- 3.1 Objetivos
- 3.2 Sistema GPS
- 3.3 Relojes atómicos
- 3.4 Cristales de cuarzo
- 3.5 Resumen

TEMA 4: Equipos generadores de señal

- 4.1 Objetivos
- 4.2 Introducción
- 4.3 Generadores de función analógicos
- 4.4 Generadores de función digitales: DDS y AWG
- 4.5 Resumen

TEMA 5: Equipos analizadores de señal

- 5.1 Objetivos
- 5.2 Analizadores de Fourier
- 5.3 Analizadores de espectros heterodinos
- 5.4 Secciones de RF, IF y vídeo
- 5.5 Resumen

TEMA 6: Sistemas de conversión de energía

- 6.1 Objetivos
- 6.2 Introducción
- 6.3 Convertidores Fotovoltaicos
- 6.4 Convertidores termoeléctricos
- 6.5 Resumen

TEMA 7: Introducción a la instrumentación electrónica

- 7.1 Obietivos
- 7.2 Información y señales
- 7.3 Instrumentación electrónica de medida
- 7.4 Conversión A/D: consideraciones prácticas del teorema de muestreo

7.5 Resumen

TEMA 8 : Sistemas de Instrumentación

- 8.1 Objetivos
- 8.2 Introducción
- 8.3 Tarjetas de adquisición de datos
- 8.4 Buses de instrumentos: bus GPIB y buses VXI, LXI y PXI
- 8.5 Software de instrumentación
- 8.6 Resumen

Principios Metodológicos/Métodos Docentes

- · Clase magistral participativa
- Resolución de problemas
- Realización de prácticas de laboratorio con aprendizaje colaborativo

Criterios y sistemas de evaluación

- Prueba escrita al final del cuatrimestre sobre contenidos de la asignatura y resolución de problemas prácticos.
- Prueba práctica de laboratorio al final sobre las prácticas realizadas y manejo de los equipos de laboratorio.

Recursos de aprendizaje y apoyo tutorial

- Aula con medios audiovisuales
- Laboratorio de Instrumentación electrónica con puestos dotados de: ordenador y herramienta de simulación cadence.
- Instrumentación por puesto: Fuente de alimentación, multímetro digital, generador digital de señales, contador universal, osciloscopio digital y analizador de Fourier
 - Puestos especiales dotados con: medidores de impedancias y analizadores de espectros

Calendario y horario

http://www.tel.uva.es/bin/horarios1314/Grado_4_SistElectronicos.pdf

Tabla de Dedicación del Estudiante a la Asignatura/Plan de Trabajo

• El Anexo I mencionado en la guía, donde se describe la planificación detallada, se entregará al comienzo de la asignatura.

Responsable de la docencia (recomendable que se incluya información de contacto y breve CV en el que aparezcan sus líneas de investigación y alguna publicación relevante)

Nombre: José Vicente Antón; DNI: 11700421E; Nº Funcionario: 1170042157AO504

E.T.S.I. de Telecomunicación

Departamento de Electricidad y Electrónica

Tfno: 983 423 678 Ext: 3678 E-mail: vicente@ele.uva.es

Formación Académica:

Licenciado en Ciencias Físicas por la Universidad de Valladolid (1977). Doctor en Ciencias Físicas por la Universidad de Valladolid (1981).

Puestos docentes ocupados:

Ayudante de clases prácticas (exclusiva) desde 01/04/1977 hasta 31/03/1980 Profesor Adjunto Interino (exclusiva) desde 01/04/1980 hasta 31/03/1984

Profesor Titular de Universidad (exclusiva) desde 01/04/1984 hasta 30/09/1986

Profesor Titular Universidad (tiempo completo) desde 01/10/1986 continúa

Mi vinculación con la Universidad se inició en 1977, al incorporarme como Ayudante al departamento de Electricidad y Electrónica de la Universidad de Valladolid y desde entonces he desarrollado toda mi labor docente e investigadora ininterrumpidamente en esta Universidad. Tras ocupar de forma interina una plaza de Profesor Titular, gané por oposición en 1984 la plaza de Profesor Titular de Universidad del Área de Electrónica que ocupo en la actualidad, Durante estos 35 años mi actividad se ha centrado principalmente en la docencia y en la investigación, pero también he ocupado puestos relevantes de gestión universitaria.

INVESTIGACION:

Mi labor investigadora se desarrolló inicialmente en el ámbito de la caracterización y tecnología de dispositivos semiconductores y más concretamente en centros profundos en uniones PIN y uniones Metal-Aislante-Semiconductor. Posteriormente centré mi investigación en el del diseño y caracterización de circuitos analógicos; compensadores de temperatura en osciladores de cristal de cuarzo, diseño de circuitos integrados de baja tensión de

alimentación y en convertidores analógicos digitales sigma delta CMOS de altas prestaciones para sistemas de transmisión de datos.

Evaluación positiva de Méritos Investigadores, al amparo del R. D. 1086/1989 de 28 de agosto, 4 sexenios.

Número de publicaciones: 37

Ponencias a congresos internacionales: 40

Participación en proyectos de investigación: 1 con empresa internacional (Semiconductor Research Corporation/Agere Systems); 7 Nacionales, 5 Autonómicos (Junta de Castilla y León), 1 de la Universidad de Valladolid.

Participación en contratos de I+D con empresas y administraciones: 3 nacionales.

Patentes: 1 nacional.

Miembro del grupo investigador "Caracterización eléctrica de materiales semiconductores" en el periodo 1977-2000 y del grupo investigador "Diseño de circuitos integrados analógicos" desde el 2000 ambos del Departamento de Electricidad y Electrónica de la Universidad de Valladolid.

DOCENCIA:

Mi labor docente se ha desarrollado ininterrumpidamente desde 1977 (35 años) en el Departamento de Electricidad y Electrónica de la Universidad de Valladolid habiendo impartido docencia en todos los niveles: primer y segundo ciclo de licenciatura, doctorado y máster oficial.

He impartido docencia en la Licenciatura en Física, Ingeniero en Electrónica (titulación de segundo ciclo), Ingeniero de Telecomunicación e Ingeniero Técnico en Informática de Gestión, en los Programas de Doctorado: Electricidad y Electrónica, desde el curso 1981/82 hasta el 1998/99; Doctorado en Teoría de la Señal y Comunicaciones e Ingeniería Telemática, desde el curso 2001/2002 hasta el curso 2009/2010 y en Máster Universitario en Instrumentación en Física, Máster en Tecnologías de la Información y las Comunicaciones.

Evaluación positiva de Méritos Docentes, al amparo del R.D. 1086/1989 de 28 de agosto, 6 quinquenios.

Tesis doctorales dirigidas: 2, una de ellas premio extraordinario de doctorado.

Trabajos Fin de Carrera: 26

Prácticas en empresas tuteladas: 63

Coordinador del Proyecto "Movilidad de postgrados y estudiantes de Ingeniería de Telecomunicación y Electrónica" del Programa ALFA de la Comisión Europea 1996/1997.

Participación como docente en el Programa Interuniversitario de la Universidad de la Experiencia de la Junta de Castilla y León durante el curso 2004-05.

GESTION ACADÉMICA

He desempeñado diferentes cargos académicos de gestión, dentro de la Universidad de Valladolid, en el Departamento, en el Centro y en el Equipo Rectoral.

Desde el 01/03/1990 hasta el 17/03/1993 he ocupado el cargo de Secretario del Departamento de Electricidad y Electrónica. Subdirector de la E.T.S. de Ingenieros de Telecomunicación desde 18/03/1993 hasta el 15/06/2006 y Director de la E.T.S. de Ingenieros de Telecomunicación desde 16/06/2006 hasta el 06/09/2006. En la actualidad ocupo el cargo de Director de Área de Pruebas de Acceso de la Universidad de Valladolid desde 01/11/2006.

Idioma en que se imparte

CASTELLANO