

>>Enlace fichero guia docente

Plan 448 GRADO EN INGENIERÍA EN DISEÑO INDUSTRIAL Y DESARROLLO DE PROD.

Asignatura 42454 QUÍMICA EN INGENIERÍA

Tipo de asignatura (básica, obligatoria u optativa)

Asignatura Optativa.

Créditos ECTS

6 Créditos

Competencias que contribuye a desarrollar

- CG1. Capacidad de análisis y síntesis.
- CG2. Capacidad de organización y planificación del tiempo
- CG4. Capacidad de expresión escrita
- CG5. Capacidad para aprender y trabajar de forma autónoma
- CG6. Capacidad de resolución de problemas
- CG7. Capacidad de razonamiento crítico / análisis lógico
- CG9. Capacidad para trabajar en equipo de forma eficaz
- CG12. Capacidad para la motivación por el logro y la mejora continua
- CG13. Capacidad para actuar éticamente y con compromiso social

Objetivos/Resultados de aprendizaje

El estudiante será capaz de:

- 1. Comprender y aplicar los principios básicos de química en relación a la estructura atómica y molecular.
- 2. Comprender y aplicar los principios básicos de química a las interacciones entre especies materiales iguales o diferentes.
- 3. Aplicar los principios de las transformaciones químicas al cálculo de cantidades de reactivos transformados y productos obtenidos, así como a los aspectos termodinámicos y cinéticos de las mismas.
 - 4. Aplicar los principios del equilibrio químico a los principales tipos de reacciones.
 - 5. Buscar, discriminar y sintetizar información relevante.
 - 6. Medir parámetros experimentales y el uso de los mismos en cálculos conducentes a resultados técnicos.

Contenidos

5.

Bloques temáticos[1]

Bloque 1:

ESTRUCTURA Y PROPIEDADES DE LA MATERIA

Composición de la materia. Estructura átómica

- Formulación inorgánica y orgánica
- Configuración electrónica de los átomos
- Propiedades Periódicas

Carga de trabajo en créditos ECTS:

2.3

Los contenidos de este bloque se especifican en la siguiente tabla:

Temas

Horas*

jueves 14 junio 2018 Page 1 of 4

1.- ESTRUCTURA Y PROPIEDADES DE LA MATERIA Enlace Iónico. 1. Justificación y concepto de enlace químico. 2. Enlace iónico. Energía reticular. 1 + 22 Enlace Covalente. 1. Concepto de enlace covalente. 2. Teoría de Lewis y forma de las moléculas. 3. Hibridación de orbitales atómicos. 4. Teoría de orbitales moleculares. 5. Polaridad de enlaces y de moléculas. 1+3 3 Enlace metálico. 1. Teoría de Drude. 2. Teoría de las bandas. 3. Justificación de las propiedades metálicas. 1+1 4 Fuerzas intermoleculares. 1. Tipos de fuerzas de Van der Waals. 2. Enlace de hidrógeno. 3. Influencia de las fuerzas intermoleculares en las propiedades físicas y en los estados de agregación de la materia. 1+2 5 Estados de agregación de la materia. 1. Gases y líquidos. 2. Sólidos: propiedades y clasificación. 3. Tipos de sólidos: reales y amorfos. 2+2 6 Propiedades de las disoluciones. Concepto de disolución. 2. Solubilidad: concepto y factores de los que depende. 3. Disoluciones con componentes volátiles: presión de vapor y temperatura de ebullición. 4. Disoluciones que contienen solutos no volátiles. Propiedades coligativas. 1+3 Bloque 2: BASES QUÍMICAS DE LA INGENIERÍA Carga de trabajo en créditos ECTS: Los contenidos de este bloque se especifican en la siguiente tabla: **Temas** Horas* II.- BASES QUÍMICAS DE LA INGENIERÍA Termodinámica Química 1. Primer Principio de la Termodinámica. 2. Calores de reacción: Ley de Hess. 3. Variación de los calores de reacción con la temperatura

jueves 14 junio 2018 Page 2 of 4

4. Segundo Principio de la Termodinámica: Entropía y Energía libre de Gibbs

Equilibrios homogéneos y heterogéneos.
Factores que afectan al equilibrio.

1+2 8

Equilibrio Químico.

- 3. Equilibrio en los procesos ácido-base
 - 3.1. Reacciones de hidrólisis
 - 3.2. Disoluciones amortiguadoras.

1+3

9

Procesos de oxidación-reducción. Electroquímica I.

- I. Conductividad de las disoluciones de electrolitos.
- 2. Procesos redox. Pilas galvánicas.
- 3. Potenciales estándar de electrodo.
- 4. Efecto de la concentración en el voltaje de una pila. Ecuación de Nernst.
- 5. Energía libre, voltaje de la pila y equilibrio.

1+3 10

Electroquímica II

- 1. Celdas electrolíticas.
- 2. Aspectos cuantitativos de la electrolisis: Leyes de Faraday
- 3. Aplicaciones electroquímicas.
 - a) Pilas y baterías comerciales
- b) Celdas de combustible.
 - 4. Procesos de corrosión y protección de metales.

1+3 11

Cinética Química.

- 1. Cinética de los procesos químicos: velocidad de reacción.
- 2. Factores que influyen en la velocidad de reacción.
- 3. Catálisis. Importancia industrial de los catalizadores.

1+2

12

Fundamentos de Química Orgánica.

- 1. Importancia de la Química Orgánica en la Industria.
- 2. Combustibles, Petróleo y Carbón. Fuentes de

Hidrocarburos.

3. Polímeros Sintéticos.

1+1

Principios Metodológicos/Métodos Docentes

- 1. Método expositivo / lección magistral. Esta metodología se centra fundamentalmente en la exposición verbal por parte del profesor de los contenidos sobre la materia objeto de estudio. Se llevará a cabo en el aula. Competencias a desarrollar: CG1, CG6, CG13 y CE4
- 2. Resolución de ejercicios y problemas. Se realiza en el aula como complemento de la lección magistral para facilitar la comprensión de los conceptos y resolver problemas y análisis de resultados. Se llevará acabo en el aula.. Competencias a desarrollar: CG1, CG5, CG6, CG7, CG9, CG12, CG13 y CE4.
- 3. Aprendizaje cooperativo. Método de enseñanza-aprendizaje para el trabajo en grupo. Se llevará a cabo con grupos reducidos de alumnos con el fin de realizar actividades propuestas por el profesor.

Competencias a desarrollar: CG1, CG2, CG4, CG5, CG6, CG7, CG9, CG12, CG13 y CE4

4. Aprendizaje mediante experiencias. Las experiencias se desarrollarán en el laboratorio. El número de alumnos dependerá de la capacidad del laboratorio.

Competencias a desarrollar: CG2, CG4, CG7, CG9, CG13 y CE4

Criterios y sistemas de evaluación

Se realiza una evaluación continua, a lo largo de todo el curso, considerando los apartados siguientes:

- 1.- Pruebas objetivas parciales. Se realizarán dos pruebas cortas con cuestiones teóricas y/o numéricas. Su contribución a la calificación final será del 20%.
- 2.- Problemas y trabajos. Se trata de evaluar la tarea realizada por el alumno, o grupos de alumnos, a instancias del profesor, en relación a la entrega de problemas resueltos, trabajos, etc., que se presentarán en clase o tutoría docente. Su contribución a la calificación final será del 10 %.
- 3.- Prácticas de Laboratorio e informe realizado. Se evaluará la realización de las prácticas de laboratorio y los correspondientes informes que se elaboren, Su contribución en la calificación final será del 10%.
- 4.- Examen final ordinario. Consistirá en una prueba escrita que incluirá problemas, cuestiones teóricas y de aplicación o numéricas.
- 5.- Examen final extraordinario. Consistirá en una prueba escrita que incluirá problemas y cuestión/es de las prácticas de laboratorio, cuestiones teóricas y de aplicación o numéricas.

jueves 14 junio 2018 Page 3 of 4

Recursos de aprendizaje y apoyo tutorial

Se utilizará la plataforma MOODLE para el estudio de los temas referentes a la asignatura. La realización de los problemas y entrega de ejercicios y informes se realizarán con la plataforma MOODLE.

Calendario y horario

Martes:

Seminarios: 12-13 horas; Teoría: 13-14 horas

Jueves:

Problemas: 12-14 horas

Tabla de Dedicación del Estudiante a la Asignatura/Plan de Trabajo

ACTIVIDAD PRESENCIAL HORAS ACTIVIDAD NO PRESENCIAL HORAS

CLASES TEÓRICAS	15	Estudio autónomo individual	80
CLASES PRÁCTICAS	30-2.1	Estudio y y trabajo en grupo	10
LABORATORIOS	12		
SEMINARIOS	3		
EVALUACIÓN	2		

Responsable de la docencia (recomendable que se incluya información de contacto y breve CV en el que aparezcan sus lineas de investigación y alguna publicación relevante)

90

Total no presencial

Mª del Rosario Patiño Molina; rpatino@eii.uva.es

LINEAS DE INVESTIGACIÓN:

Trabajo presencial

- Grupo de Peptidomiméticos. Búsqueda de nuevos agentes neuroprotectores mediante diseño racional. Síntesis y farmacología.
- Grupo de excelencia Termotécnia G-181 desde 2010.

Último proyecto de investigación Nacional: Ref: ENE2014-589900

60

Optimización del diseño y operación integrada de sistemas radiantes térmicamente con fuentes de baja energía en clima mediterráneo.

Ultimo proyecto de innovación docente 2015:

Implementación de herramientas virtuales en la plataforma Moodle 2.5 para la enseñanza de la Química en la Escuela de Ingenierías Industriales.

Idioma en que se imparte

ESPAÑOL

jueves 14 junio 2018 Page 4 of 4