

Proyecto/Guía docente de la asignatura

Asignatura	ELECTRÓNICA DE POTENCIA PARA APLICACIONES EN SISTEMAS ELÉCTRICOS			
Materia	Tecnología Electrónica			
Módulo	Módulo de Tecnología específica eléctrica			
Titulación	Grado en Ingeniería Eléctrica			
Plan	439 Código 41643			
Periodo de impartición	Cuatrimestral (Q5) Tipo/Carácter		Obligatoria	
Nivel/Ciclo	Grado Curso 3º			
Créditos ECTS	6 ECTS			
Lengua en que se imparte	Español			
Profesor/es responsable/s	José Manuel González de la Fuente (<u>j. m. gonz@tele.uva.es</u> ; 983 42 3491)			
Datos de contacto (E-mail, teléfono)	(El horario de tutoría debe consultarse en la página de la UVa)			
Departamento	Tecnología Electrónica			

1. Situación / Sentido de la Asignatura

1.1 Contextualización

La asignatura se dedica al estudio de las aplicaciones de la electrónica de potencia al campo de la Ingeniería Eléctrica. Cada vez en mayor medida, los sistemas eléctricos van utilizando más equipos electrónicos para realizar tareas de regulación y conversión de la energía eléctrica que tradicionalmente desarrollaban máquinas eléctricas. La utilización de equipos electrónicos ofrece frente a las anteriores ventajas evidentes, como pueden ser:

- Respuesta más rápida, controlable y estable.
- Ausencia de vibraciones.
- Mejor mantenimiento.
- Mayor fiabilidad.
- Ausencia de arco eléctrico y sus problemas asociados (perturbación electromagnética).

Los equipos electrónicos estudiados se dedicarán, en general a:

- Regular la energía eléctrica (tanto CC como CA).
- Transformar la energía eléctrica de CC a CA y viceversa.
- Modificar las características de la energía eléctrica (amplitud, frecuencia, número de fases, etc).

La electrónica de potencia encuentra sus campos de aplicación más frecuentes en el ámbito de la energía eléctrica en los siguientes:

- Mejora de las redes de transporte.
- Enlaces en continua entre sistemas eléctricos de potencia.
- Acondicionamiento de redes (compensación de reactiva, armónicos).
- Conexión de centrales de energía alternativa a la red.
- Control de motores.
- Cargadores de baterías.
- Control de tracción de vehículos eléctricos, etc.

1.2 Relación con otras materias

Se incluyen en este apartado las relaciones más significativas entre la asignatura Electrónica de Potencia y el resto que componen el plan de estudios. No se incluirán, aunque existan, relaciones puntuales o poco significativas.

• ASIGNATURAS PREVIAS ÚTILES PARA ELECTRÓNICA DE POTENCIA:

- Matemáticas III:
 - Transformada de Laplace.
 - Series y transformada de Fourier

Electrotecnia:

- Análisis de circuitos.
- Respuesta transitoria.
- Análisis en frecuencia de los circuitos de alterna.
- Sistemas trifásicos equilibrados.
- Principios básicos de transformadores.
- Principios básicos de máquinas rotativas.

o Fundamentos de Electrónica.

- El diodo, el transistor y sus aplicaciones.
- o Fundamentos de Automática.
 - Conceptos básicos de sistemas de control.
 - Realimentación negativa.

• ASIGNATURAS SIMULTÁNEAS ÚTILES PARA ELECTRÓNICA DE POTENCIA:

- Máguinas eléctricas I:
 - Transformadores.
 - Máquinas asíncronas.
 - Máquinas de corriente continua

ASIGNATURAS POSTERIORES RELACIONADAS CON ELECTRÓNICA DE POTENCIA:

- o Electrónica industrial para aplicaciones en sistemas eléctricos:
 - Aplicaciones en la industria, en el transporte y en la distribución de energía eléctrica de los convertidores electrónicos de potencia.
 - Aplicación de los convertidores de potencia en sistemas de energía alternativa.

Sistemas de transporte de tracción eléctrica:

- Automóvil eléctrico.
- Tracción ferroviaria.

o Accionamientos eléctricos:

- Motores eléctricos. Pares motores.
- Aplicaciones: Bombas, ventiladores.

1.3 Prerrequisitos

No se han establecidos prerrequisitos para la asignatura Electrónica de potencia para aplicaciones en sistemas eléctricos, pero se recomienda haber cursado previamente las asignaturas Fundamentos de Electrónica y Electrotecnia.

2. Competencias

2.1 Generales

CG5: Capacidad para aprender y trabajar de forma autónoma.

CG8: Capacidad para aplicar los conocimientos a la práctica.

CG9: Capacidad para trabajar en equipo de forma eficaz.

CG14: Capacidad de evaluar.:

2.2 Específicas

CE25: Conocimiento aplicado de electrónica de potencia.

3. Objetivos

Se han establecido para la asignatura los siguientes objetivos generales:

- Conocer los campos de aplicación de la electrónica de potencia e industrial en la ingeniería eléctrica.
- Expresar y comparar el principio de funcionamiento de los dispositivos electrónicos de potencia.
- Interpretar la documentación técnica relacionada con los semiconductores de potencia.
- Identificar y valorar las distintas configuraciones de convertidores de potencia.
- Describir las aplicaciones típicas de los convertidores de potencia.
- Elegir la configuración de convertidor de potencia más adecuada a cada aplicación.
- Interpretar la documentación técnica relacionada con los convertidores electrónicos de potencia y establecer el más adecuado para cada aplicación.

4. Contenidos y/o bloques temáticos

Bloque 1: Electrónica de Potencia para aplicaciones en sistemas eléctricos

Carga de trabajo en créditos ECTS:

6

a. Contextualización y justificación

La asignatura se estructura en un único bloque temático dedicado al estudio integral de los convertidores electrónicos de potencia en sus distintos aspectos:

- · Configuraciones.
- Análisis de su funcionamiento.
- Simulación.
- Semiconductores de potencia empleados.
- Aplicaciones de los convertidores en el ámbito de los Sistemas Eléctricos.

La asignatura contribuye a desarrollar de manera fundamental la competencia específica "CE25: Conocimiento aplicado de electrónica de potencia" del plan de estudios, desde su carácter de asignatura obligatoria. Podrá profundizarse en el desarrollo de esta competencia cursando la asignatura optativa "Electrónica industrial para aplicaciones en sistemas eléctricos", a la que esta asignatura sirve de base

b. Objetivos de aprendizaje

- Relacionados con los aspectos generales de la asignatura:
 - Describir los campos de aplicación de la electrónica de potencia.
 - Recordar las características de funcionamiento de los semiconductores de potencia.
 - o Elegir el semiconductor más adecuado para cada tipo de convertidor.
- Relacionados con los distintos tipos de convertidores.
 - Reconocer las diferentes configuraciones de los convertidores.
 - Describir el funcionamiento de las distintas configuraciones.
 - o Analizar las diferentes topologías de los convertidores.
 - o Comparar y elegir en cada situación la configuración más adecuada.
 - Dimensionar los elementos constitutivos de los convertidores.
 - o Simular el funcionamiento de los convertidores.
- Relacionados con las aplicaciones de la Electrónica de Potencia en los sistemas eléctricos.
 - Describir el funcionamiento de los equipos.
 - o Interpretar los catálogos comerciales.

c. Contenidos

Los contenidos de la asignatura son: Fundamentos de los dispositivos empleados en electrónica de potencia, rectificadores de potencia, convertidores CA/CA, convertidores CC/CC, inversores, aplicaciones de los convertidores, que se desarrollan en el siguiente TEMARIO:

- 1.- Introducción a la Electrónica de Potencia. Generalidades.
 - Aspectos generales de los sistemas electrónicos de potencia.
 - Los convertidores electrónicos de potencia. Clasificación.
 - Simulación de convertidores electrónicos de potencia.
 - Dispositivos semiconductores de potencia. Polos de potencia.
 - Recordatorio de conocimientos necesarios para la asignatura.
- 2.- Convertidores CC/CC.
 - Introducción.
 - El convertidor reductor.
 - El convertidor elevador.
 - Otras configuraciones.
 - Aplicaciones de los convertidores CC/CC.
- 3.- Convertidores CA/CC.
 - Introducción.
 - Rectificadores no controlados.
 - · Rectificadores controlados.
 - Aplicaciones de los convertidores CA/CC.
- 4.- Convertidores CC/CA.
 - Introducción.
 - Inversor de onda cuadrada.
 - Inversor modulado por ancho de pulso.
 - Aplicaciones de los convertidores CC/CA.

- 5.- Convertidores CA/CA.
 - Introducción.
 - Controladores de tensión alterna.
 - Aplicaciones de los convertidores CA/CA.

d. Métodos docentes

MÉTODOS DOCENTES	OBSERVACIONES
Lección magistral	
Resolución de problemas	
Aprendizaje cooperativo.	

e. Plan de trabajo

El bloque se organizará en los siguientes temas:

Tema	Título del tema	Teoría (horas)	Aula (horas)	Laboratorio (horas)
1	Introducción a la Electrónica de Potencia	6	4	4
2	Convertidores CC/CC	6	3	4
3	Convertidores CA/CC	8	4	4
4	Convertidores CC/CA	6	3	2
5	Convertidores CA/CA	2	0	0
Repaso/Ajuste calendario		2	0	0
Evaluación continua		2	0	0
	TOTAL	32	14	14

La organización semanal de las actividades presenciales, suponiendo un calendario de 15 semanas y sin días no lectivos, será la siguiente:

Semana	Contenidos	Teoría (h)	Aula (h)	Laboratorio (h)
1	- Presentación de la asignatura. TEMA 1: Introducción a la electrónica de potencia (I) - Aula: Introducción a las prácticas de aula.	2	1	0
2	- TEMA 1: Introducción a la electrónica de potencia (II) - Aula: Problemas del Tema 1.	2	12	0
3	- TEMA 1: Introducción a la electrónica de potencia (III) - Aula: Problemas del Tema 1 - Laboratorio: Sesión 1	2	1	2
4	TEMA 2: Convertidores CC/CC (I) - Aula: Presentación de trabajos del Tema 1	2	1	0
5	TEMA 2: Convertidores CC/CC (II) - Aula: Problemas del Tema 2 - Laboratorio: Sesión 2	2	1	2

6	TEMA 2: Convertidores CC/CC (III)	2	1	2
	- Aula: Problemas del Tema 2			_
	- Laboratorio: Sesión 3			
7	AJUSTE: Sesiones de ajuste de cronograma (Teoría)	2	1	0
	- Aula: Presentación de trabajos del Tema 2		•	Ü
8	TEMA 3: Convertidores CA/CC (I)	3	1	0
	- Examen parcial 1.		•	Ü
	- Aula: Problemas del Tema 3			
9	TEMA 3: Convertidores CA/CC (II)	2	1	2
	- Aula: Problemas del Tema 3.	2		2
	- Laboratorio: Sesión 4			
10	TEMA 3: Convertidores CA/CC (III)	2	1	2
	- Aula: Problemas del Tema 3.	2	'	2
	- Laboratorio: Sesión 5			
11	TEMA 3: Convertidores CA/CC (IV)	2	1	0
	- Aula: Presentación de trabajos del Tema 3.		'	
12	TEMA 4: Convertidores CC/CA (I)	2	1	2
	- Aula: Problemas del Tema 4	2		2
	- Laboratorio: Sesión 6			
13	TEMA 4: Convertidores CC/CA (II)	3	1	0
	- Examen parcial 2.	3		O
	- Aula: Problemas del Tema 4			
14	TEMA 4: Convertidores CC/CA (III)	2	1	0
	- Aula: Presentación de trabajos del Tema 4.			O
15	TEMA 5: Convertidores CA/CA (I)	2	0	2
	- Laboratorio: Sesión 7		U	Z 1
	TOTAL	32	14	14

f. Evaluación

Se describe en el apartado 7.

g. Bibliografía básica

- D.W. Hart. "Electrónica de Potencia" Pearson Educación, S.A., Madrid, 2001.
- M.H. Rashid. "Electrónica de Potencia: Circuitos, dispositivos y aplicaciones" Tercera Edición. Pearson Educación, S.A., México, 2004.

h. Bibliografía complementaria

- S. Martínez, J.A. Gualda. "Electrónica de Potencia: Componentes, topologías y equipos" Internacional Thomson Editores Spain Paraninfo, S.A., Madrid, 2006.
- N. Mohan., T.M. Undeland, W.P. Robbins. "Electrónica de Potencia: Convertidores, aplicaciones y diseño" Tercera Edición. Mc Graw Hill.
- J. Ureña y otros. "Electrónica de Potencia" Servicio de publicaciones de la Universidad de Alcalá de Henares, 1999.

i. Recursos necesarios

- Página de MOODLE de la asignatura.
- Software libre de simulación (LT-Spice)
- Instrumentación electrónica básica y material de laboratorio.

j. Temporalización

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
6	Primer cuatrimestre. (Q5)

5. Métodos docentes y principios metodológicos

La docencia se desarrolla en tres tipos de grupo:

- En el grupo grande (Teoría) se imparten las clases teóricas con ayuda de proyecciones. Los estudiantes cuentan con textos de apoyo preparados por los profesores para esta asignatura.
- En el grupo mediano (Prácticas de Aula) se imparten, fundamentalmente, las clases de problemas. Las clases de este tipo se utilizan para la realización de ejemplos de problemas, la resolución por el profesor de algunos problemas de la colección propuesta y para la presentación de los trabajos desarrollados por los estudiantes.
- En el grupo pequeño (Laboratorio) se imparten las prácticas de laboratorio, que incluyen sesiones de simulación de convertidores y sesiones de realización física del convertidor y su ensayo.

6. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teórico-prácticas (T/M)	32	Estudio y trabajo autónomo individual	65
Clases prácticas de aula (A)	14	Estudio y trabajo autónomo grupal	25
Laboratorios (L)	14	(W) (S)	A
Total presencial	60	Total no presencial	90

7. Sistema y características de la evaluación

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Entrega de ejercicios	15%	Cuatro entregas: Temas 1, 2, 3 y 4.
Exámenes parciales	25%	Dos exámenes: - Parcial 1: Temas 1 y 2 (Aprox. Semana 8) Parcial 2: Temas 3 y 4 (Aprox. Semana 13).
Laboratorio	10%	
Examen Ordinario	50%	
Examen Extraordinario	50%	

CRITERIOS DE CALIFICACIÓN

• Convocatoria ordinaria:

 La calificación de la convocatoria ordinaria se obtiene como la suma ponderada de las distintas actividades que integran la evaluación: Entregables (15%), Exámenes parciales (25%), Laboratorio (10%) y Examen Ordinario (50%). No hay nota mínima en ninguna de las partes y el aprobado se sitúa en 5,0.

• Convocatoria extraordinaria:

 La calificación de la convocatoria extraordinaria se obtiene como la suma ponderada de las distintas actividades que integran la evaluación: Entregables (15%), Exámenes parciales (25%), Laboratorio (10%) y Examen Extraordinario (50%). No hay nota mínima en ninguna de las partes y el aprobado se sitúa en 5,0

8. Consideraciones finales

