

Proyecto/Guía docente de la asignatura

Asignatura	Óptica		
Materia	Óptica		
Módulo			
Titulación	Grado en Física		
Plan	469 Código 45760		
Periodo de impartición	Anual	Tipo/Carácter	Obligatoria
Nivel/Ciclo		Curso	30
Créditos ECTS			
Lengua en que se imparte	Español		
Profesor/es responsable/s	Ángel Máximo de Frutos Baraja, Carlos Baladrón García y Carlos Toledano Olmeda		
Datos de contacto (E-mail, teléfono)	angel@goa.uva.es baladron@cpd.uva.es toledano@goa.uva.es		
Departamento	Física Teórica, Atómica y Óptica		

Universidad de vanadond

1. Situación / Sentido de la Asignatura

1.1 Contextualización

Se imparte en el tercer curso. Curso anual de 120 horas lectivas en aula (clases de teoría y de problemas)

1.2 Relación con otras materias

Tiene relación particularmente estrecha con Fundamentos de Campos y Ondas

1.3 Prerrequisitos

Requisitos previos: Conocimientos básicos de:

- Álgebra y Análisis vectoriales
- Teoría de Funciones de variable compleja
- Análisis Funcional, particularmente la transformación de Fourier
- Electromagnetismo (de los Fundamentos de Campos y Ondas)
- Estructura de la materia.

2. Competencias

2.1 Generales

- Entender los principios de la Óptica Geométrica y su aplicación en los instrumentos ópticos más comunes.
- Conocer la relación entre los modelos geométrico y ondulatorio en Óptica.
- Comprender los fenómenos básicos de propagación de ondas y en particular, de la luz.
- Distinguir entre velocidad de fase y de grupo en un fenómeno ondulatorio
- Conocer las representaciones de la luz polarizada y entender los aspectos estadísticos de los parámetros de Stokes.
- Conocer los procesos de interferencia y difracción y el fundamento de distintos interferómetros y redes de difracción.
- Conocer el comportamiento de la luz en medios materiales incluyendo los medios anisótropos.
- Entender el concepto de coherencia en Óptica.
- Conocer los elementos básicos de la Óptica de Fourier.
- Conocer las magnitudes radiométricas y fotométricas más relevantes.
- Conocer los fundamentos de la Óptica de medios no lineales.

2.2 Específicas

3. Objetivos

Conocer los fundamentos de: Óptica Geométrica. Fenómenos de propagación de la luz en medios materiales. Polarización. Interferencias. Difracción. Óptica de Fourier. Láseres. Radiometría. Fotometría y Color. Óptica de fibras y óptica integrada. Óptica Aplicada.

4. Contenidos y/o bloques temáticos

Bloque 1:
1 Introducción histórica.
2 Óptica Geométrica.
3 Fenómenos de propagación de la luz en medios materiales.
4 Polarización.
5 Medios isótropos lineales.
6 Medios anisótropos.
7 Interferencias.
8 Difracción.
9 Visión, Radiometría, Fotometría y Color.
10 Óptica Cuántica y Láseres.
11 Óptica No Lineal y Actividad óptica.
12 Óptica Aplicada.

Carga de trabajo en créditos ECTS:

12

a. Contextualización y justificación

Se imparte en el tercer curso. Curso anual de 120 horas lectivas en aula (clases de teoría y de problemas)

b. Objetivos de aprendizaje

- Entender los principios de la Óptica Geométrica y su aplicación en los instrumentos ópticos más comunes.
- Conocer la relación entre los modelos geométrico y ondulatorio en Óptica.
- Comprender los fenómenos básicos de propagación de ondas y en particular, de la luz.
- Distinguir entre velocidad de fase y de grupo en un fenómeno ondulatorio
- Conocer las representaciones de la luz polarizada y entender los aspectos estadísticos de los parámetros de Stokes.
- Conocer los procesos de interferencia y difracción y el fundamento de distintos interferómetros y redes de difracción.
- Conocer el comportamiento de la luz en medios materiales incluyendo los medios anisótropos.
- Entender el concepto de coherencia en Óptica.
- Conocer los elementos básicos de la Óptica de Fourier.
- Conocer las magnitudes radiométricas y fotométricas más relevantes.
- Conocer los fundamentos de la Óptica de medios no lineales.

c. Contenidos

- 1.- Introducción histórica.
- 2.- Óptica Geométrica.

Principios y leyes fundamentales: Principio de Fermat, trayectorias de la luz y superficie de onda. Representación óptica: Stigmatismo, el objeto y la imagen. Óptica paraxial. Óptica con superficies planas: Láminas y prismas. Espejos. Sistemas ópticos reales: Limitación de rayos, apertura, campo y aberraciones ópticas.

3.- Fenómenos de propagación de la luz en medios materiales.

Óptica electromagnética. Ecuaciones de Maxwell. Ondas en dieléctricos. Energía de las ondas electromagnéticas. Espectro electromagnético. Superposición de ondas. Velocidad de fase y de grupo. Paquete de ondas.

4.- Polarización.

Teoría de la polarización. Tipos de luz polarizada. Parámetros de Stokes y de Jones. Matrices de Jones y de Mueller. Esfera de Poincaré.

5.- Medios isótropos lineales.

Reflexión y refracción. Fórmulas de Fresnel. Reflexión total. Óptica de medios conductores.

6 - Medios anisótropos

Estudio del tensor dieléctrico. Comportamiento de ondas planas. Estudio de la superficie de onda en medios anisótropos. Obtención y análisis de la luz polarizada.

7.- Interferencias.

Principios generales. Interferencias de Young. Interferencias con ondas múltiples. Interferómetro de Fabry-Perot. Interferómetros de doble haz. Óptica de multicapas.

8.- Difracción.

Principio de Huygens-Fresnel. Teoría de Kirchhoff. Difracción de Fresnel y de Fraunhofer. Difracción de Fraunhofer por diversas aberturas. Redes de difracción. Espectrómetros.

9.- Visión, Radiometría, Fotometría y Color.

El ojo humano. Sensibilidad espectral. Agudeza visual. Visión del movimiento. Visión binocular. Magnitudes radiométricas. Radiadores y cuerpo negro. Detectores térmicos. Fotografía. Magnitudes fotométricas. Relaciones fotométricas. Fotometría visual. Atributos del color. Algebra del color.

10.- Óptica Cuántica y Láseres.

Ondas y partículas. Fotones. Cuantificación del campo electromagnético, Estados coherentes de la radiación. Emisión espontánea y estimulada. Cavidad láser: Modos. Amplificación de la radiación. Tipos de láseres.

11.- Óptica No Lineal y Actividad óptica.

Generación de armónicos. Mezcla de frecuencias. Intensidad del segundo armónico. Conjugación de fase. Efecto Pockels. Efecto Kerr. Actividad óptica.

12.- Óptica Aplicada.

Instrumentos ópticos: Sistemas fotográficos. Características geométricas y fotométricas. Instrumentos de proyección. Iluminación y fotometría de proyectores. Telescopios. Poder resolutivo. Anteojos y telescopios de espejos. Óptica activa y adaptativa. Microscopio. Aumentos. Poder resolutivo.

d. Métodos docentes

- 1. La presentación en el aula de los conceptos y procedimientos se llevará a cabo con la ayuda de la pizarra y presentaciones informáticas. Tanto las figuras utilizadas en las clases, como todo el material visual utilizado por el profesor están a disposición de los alumnos en la Biblioteca de la UVa o en la Web de la UVa. Se utilizará el método de la lección magistral con participación del alumno.
- 2. Seminarios expuestos por profesores invitados sobre asuntos concretos de la teoría o práctica de la asignatura.
- 3. Directamente relacionadas con las actividades anteriores están las tutorías, con el fin de hacer el seguimiento del trabajo de los estudiantes.
- 4. Evaluación: integrada en cada una de las actividades formativas descritas.

e. Plan de trabajo

f. Evaluación

Combinación ponderada de evaluación continuada con exámenes globales. Se realizan un examen parcial en Enero y dos finales (Junio y Julio). Todos ellos, exámenes escritos de problemas prácticos, en los que el alumno puede utilizar los libros de teoría que desee.

g. Bibliografía básica

- Casas J. "Óptica". Pons. 1994. ISBN 8460500624
- Born M. y Wolf E. "Principles of Optics". Pergamon. 1980. ISBN 0080180183
- Ditchburn R. W. "Óptica". Reverté. 1982. ISBN 8429140360
- Hecht E. "Óptica". Pearson. 2016. ISBN 9788490354926
- Pedrotti F.L. y Pedrotti L.S. "Introduction to Optics". Prentice-Hall. 1987. ISBN 0-13-197133-6
- Klein M.V. "Optics". Addison-Wesley. 1974. ISBN 0471490806
- Cabrera J.M., López F. J. y Agulló F. "Óptica electromagnética". A. Wesley. 1993. ISBN 84-7829-021-4
- Fowles G. R. "Introduction to Modern Optics". Holt. 1968. ISBN 0-486-65957-7
- Goodman J W. "Introduction to Fourier Optics". McGraw-Hill. 1968. ISBN 0071142576 Mejías P.M. y Martínez R. "100 Problemas de Óptica". Alianza. 1996. ISBN 84-206-8632-8

h. Bibliografía complementaria

i. Recursos necesarios

En las clases teóricas se requieren los recursos habituales: pizarra convencional o electrónica, ordenador, etc.

Temporalización

TEMAS (CONTENIDOS)		PERIODO PREVISTO DE DESARROLLO
Introducción histórica.	1	Semana 1 - 2

Óptica Geométrica.		Semana 3 - 4
Visión, Radiometría, Fotometría y Color.		Semana 5 – 7
Fenómenos de propagación de la luz en medios materiales.		Semana 8 – 9
Polarización.	1	Semana 10 - 11
Medios isótropos lineales.	1	Semana 12 – 13
Medios anisótropos.	1	Semana 14 - 16
Interferencias.	1	Semana 17 - 19
Difracción.	1	Semana 20 - 22
Óptica Cuántica y Láseres.	1	Semana 23 - 25
Óptica No Lineal y Actividad óptica.		Semana 26 - 28
Óptica Aplicada.	1	Semana 29 - 30

El calendario se adecuará en cada caso a las circunstancias específicas y al desarrollo del curso.

Añada tantas páginas como bloques temáticos considere realizar.

5. Métodos docentes y principios metodológicos

- 1. La presentación en el aula de los conceptos y procedimientos se llevará a cabo con la ayuda de la pizarra y presentaciones informáticas. Tanto las figuras utilizadas en las clases, como todo el material visual utilizado por el profesor están a disposición de los alumnos en la Biblioteca de la UVa o en la Web de la UVa. Se utilizará el método de la lección magistral con participación del alumno.
- 2. Seminarios expuestos por profesores invitados sobre asuntos concretos de la teoría o práctica de la asignatura.
- 3. Directamente relacionadas con las actividades anteriores están las tutorías, con el fin de hacer el seguimiento del trabajo de los estudiantes.
- 4. Evaluación: integrada en cada una de las actividades formativas descritas.

6. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teórico-prácticas (T/M)	60	Estudio y trabajo autónomo individual	60
Clases prácticas de aula (A)	40	Estudio y trabajo autónomo grupal	60
Laboratorios (L)			
Prácticas externas, clínicas o de campo			
Seminarios (S)	10		
Tutorías grupales (TG)	5		
Evaluación	5		
Total presencial	120	Total no presencial	120

A = NÚMERO DE HORAS DE TRABAJO EN EL AULA: 120

7. Sistema y características de la evaluación

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Evaluación de teoría, problemas y seminarios (consultar Apartado 4.f)	100%	

CRITERIOS DE CALIFICACIÓN

- Convocatoria ordinaria:
 - o Consultar Apartado 4.f
- Convocatoria extraordinaria:
 - o Consultar Apartado 4.f

8. Consideraciones finales