

Proyecto/Guía docente de la asignatura

Asignatura	Robótica		
Materia	AUTOMATIZACIÓN INDUSTRIAL		
Módulo			
Titulación	Máster en Investigación en	Ingeniería de Procesos y	Sistemas
Plan	Código		
Periodo de impartición	Cuatrimestre 1	Tipo/Carácter	Optativa
Nivel/Ciclo	Máster	Curso	1º
Créditos ECTS	3		
Lengua en que se imparte	Español		
Profesor/es responsable/s	Juan Carlos Fraile Marinero (jcfraile@eii.uva.es) Eduardo Zalama Casanova (ezalama@eii.uva.es)		
Datos de contacto (E-mail, teléfono)	Juan Carlos Fraile Marinero (<u>icfraile@eii.uva.es</u> , 983-423910) Eduardo Zalama Casanova (<u>ezalama@eii.uva.es</u> , 983-185048) Escuela de Ingenierías Industriales, Paseo del Cauce 59		
Departamento	Ingeniería de Sistemas y Automática		

1. Situación / Sentido de la Asignatura

1.1 Contextualización

La asignatura "robótica" tiene como objetivo es introducir al alumno en la robótica de manipuladores y la robótica móvil, entendiéndola como el conjunto formado por: Sistema mecánico, sistema de control (cinemático y dinámico), y la programación y simulación de robots manipuladores industriales y robots móviles.

1.2 Relación con otras materias

Es recomendable una formación previa en Informática y automática

1.3 Prerrequisitos

No tiene

2. Competencias

2.1 Generales

- **CB1**. Haber adquirido conocimientos avanzados y demostrado, en un contexto de investigación científica y tecnológica o altamente especializado, una comprensión detallada y fundamentada de los aspectos teóricos y prácticos y de la metodología de trabajo en uno o más campos de estudio.
- **CB3.** Saber evaluar y seleccionar la teoría científica adecuada y la metodología precisa de sus campos de estudio para formular juicios a partir de información incompleta o limitada incluyendo, cuando sea preciso y pertinente, una reflexión sobre la responsabilidad social o ética ligada a la solución que se proponga en cada caso.
- **CB4**. Ser capaces de predecir y controlar la evolución de situaciones complejas mediante el desarrollo de nuevas e innovadoras metodologías de trabajo adaptadas al ámbito científico/investigador, tecnológico o profesional concreto, en general multidisciplinar, en el que se desarrolle su actividad.
- **CE8.** Capacidad para aplicar los conocimientos adquiridos y resolver problemas en entornos nuevos o poco conocidos dentro de contextos interdisciplinares en las áreas propias de este Master: ingeniería de procesos, ingeniería de sistemas y automatización industrial.

2.2 Específicas

COP17. Capacidad para aplicar técnicas de percepción, control y localización en robótica.

COP18. Capacidad para integrar un robot en un entorno de producción

3. Objetivos

- Conocer y aplicar las particularidades de la robótica en un entorno industrial
- Conocer y aplicar las diferentes estrategias de control e integración de los robots en un entorno industrial.
- Conocer y aplicar diferentes estrategias de control y planificación de trayectorias en manipuladores y sistemas multi-robot.
- Conocer los diferentes niveles de procesamiento en robótica móvil.
- Conocer y aplicar técnicas de procesamiento de información sensorial en robótica móvil.
- Conocer las diferentes técnicas sobre de la localización y percepción en el ámbito de la robótica móvil. Saber aplicar estas técnicas sobre un modelo de robot móvil.

4. Contenidos y/o bloques temáticos

Bloque 1: "Nombre del Bloque"

R Robots manipuladores y robótica móvil

Carga de trabajo en créditos ECTS: 3

a. Contextualización y justificación

La asignatura "robótica" tiene como objetivo es introducir al alumno en la robótica de manipuladores y la robótica móvil, entendiéndola como el conjunto formado por: Sistema mecánico, sistema de control (cinemático y dinámico), y la programación y simulación de robots manipuladores industriales y robots móviles.

b. Objetivos de aprendizaje

Los definidos en el apartado 3

c. Contenidos

Robótica industrial: Modelado de robots. Control de robots. Integración de un robot en un entorno de producción. Sistemas multi-robot. Estrategias de control: Control háptico. Planificación de trayectorias para manipuladores. Detección de colisiones para manipuladores.

Robótica Móvil: El robot móvil. Aplicaciones. Niveles de procesamiento en robótica móvil. Sensores para el posicionamiento de robots móviles. Técnicas de procesamiento de robots móviles. Mapas de entorno y estructuras de datos. Control y planificación. Filtro de Kalman.

d. Métodos docentes

En el aula	Fuera del aula	
Método expositivo / lección magistral	Estudio individual	
Aprendizaje basado en proyectos	Resolución individual de ejercicios prácticos.	

e. Plan de trabajo

El bloque se organizará en los siguientes temas:

Tema	Título del tema	Teoría (horas)	Aula (horas)	Seminario (horas)	Laboratorio (horas)
1	Modelado de robots. Control de robots	2.5		1	0 7
2	Integración de un robot en un entorno de producción.	2.5	1	1	
3	Sistemas multi-robot.	2.5	10	A) <	
4	Estrategias de control: Control háptico	2.5		4	179
5	Detección de colisiones para manipuladores.	5		U/ X	201
6	El robot móvil. Aplicaciones	2.5	111		7000
7	Niveles de procesamiento en robótica móvil.	2.5			J. Const
8	Sensores para el posicionamiento de robots móviles	2.5			1
9	Localización	2.5		1111	-/ A
10	Localización. Filtro Kalman.	2.5			3//
11	Ejercicios Matlab y Simulink	2.5			

TOTAL	30 horas		
101712	00 110100		

f. Evaluación

La evaluación de la asignatura se hará mediante memoria sobre trabajo de investigación propuesto.

ACTIVIDAD	PESO EN LA NOTA FINAL	
Experiencias de laboratorio/taller e informe.	10%	
Trabajo de investigación	90%	

g. Bibliografía básica

- Barrientos, A., Peñín L.F., Balaguer C. y Aracil R. "Fundamentos de robótica". Editorial McGraw-Hill.
- 2ª edición. 2010.
- Ollero A. "Robótica, manipuladores y robots móviles". Editorial Marcombo. 2001.
- Hogan, N. (1985). Impedance control: An approach to manipulation: Part II—Implementation. Journal of dynamic systems, measurement, and control, 107(1), 8-16.
- Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The international journal of robotics research, 5(1), 90-98.
- Lozano-Pérez, T., & Wesley, M. A. (1979). An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM, 22(10), 560-570.
- Capítulo 1 de Stochastic models, estimation and control. Vol1. by Meter S. Maybeck, Academic Press 1979.
- An Introduction to the Kalman Filter. Greg Welch and Gary Bishop. TR 95-041 .Department of Computer Science. University of North Carolina at Chapel Hill. Chapel Hill, NC 27599-3175.
- Peter Corke. Robotics Vision and Control. Fundamental Algorithms in Matlab. Springer. ISBN 978-3-642-20143-1. 2011.

h. Bibliografía complementaria

- Experimental comparison of localization methods.
 - (http://www.ai.sri.com/~konolige/papers/comparison.pdf). Gutmann, J-S, W.Burgard, D. Fox, and K. Konolige, International Conference on Intelligent Robots and Systems, Victoria, B.C. (October 1998).
- Intelligence Without Representation. (http://www.ai.mit.edu/people/brooks/papers/representation.pdf). Rodney A. Brooks, Artificial Intelligence Journal (47), 1991, pp. 139-159.
- A Robust Layered Control System for a Mobile Robot. (http://www.ai.mit.edu/people/brooks/papers/AIM-864.pdf). IEEE Journal Robotics and Automation(2), 1, pp. 14-23, 1986.
- S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors, Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann. 2002.
- Real-time Obstacle Avoidance for Fast Mobile Robots. (http://www.eecs.umich.edu/~johannb/paper10.pdf)
 J. Borenstein, Y. Koren IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, Sept./Oct., pp. 1179-1187. 1989.

i. Recursos necesarios

Software de simulación MATLAB

j. Temporalización

La organización semanal de las actividades presenciales será la siguiente:

Semana	Contenidos		
1	Temas 1, 2, 6,7,8		
2	Temas 3, 4, 9,		
3	Temas 5, 10, 11		

5. Métodos docentes y principios metodológicos

En el aula	Fuera del aula
Método expositivo / lección magistral	Estudio individual
Aprendizaje basado en proyectos	Resolución individual de ejercicios prácticos.

6. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases de aula, exposición y análisis de casos (CTP)		Estudio y trabajo autónomo individual	30
Tutorías docentes (TD)	1	Estudio y trabajo autónomo grupal	15
Prácticas de laboratorio/taller (PL)			
Estudio y preparación de pruebas (CE)	6		
Estudio/trabajo (CT)	12		
Total presencial	30	Total no presencial	45

7. Sistema y características de la evaluación

ACTIVIDAD	PESO EN LA NOTA FINAL
Experiencias de laboratorio/taller e informe.	10%
Trabajo de investigación	90%

CRITERIOS DE CALIFICACIÓN

- Convocatoria ordinaria:
 - o Evaluación de los informes y memoria de trabajos de investigación
- Convocatoria extraordinaria:
 - o Los mismos que en la convocatoria ordinaria

8. Consideraciones finales

En el campus virtual de la asignatura se dispondrá del material docente y bibliografía. La entrega de trabajos y prácticas se realizará a través del Campus virtual.