

Proyecto/Guía docente de la asignatura

Asignatura	Métodos de detección y diagnóstico de fallos aplicados a la supervisión y control de procesos		
Materia	Ingeniería de Sistemas		
Módulo			
Titulación	Máster en Investigación en Ingeniería de Procesos y Sistemas Industriales		
Plan	521	Código	53275
Periodo de impartición	1º Cuatrimestre	Tipo/Carácter	Optativa
Nivel/Ciclo	Máster	Curso	1º
Créditos ECTS	3		
Lengua en que se imparte	Español		
Profesor/es responsable/s	María Jesús de la Fuente Aparicio, José Candau Pérez, Eduardo Moya de la Torre		
Datos de contacto (E-mail, teléfono)	mjfuente@eii.uva.es, Tfno: 3984 pepcan@eii.uva.es Tfno: 4401, edumoy@eii.uva.es, Tfno: 4401		
Departamento	Ingeniería de Sistemas y Automática		

1. Situación / Sentido de la Asignatura

1.1 Contextualización

Esta asignatura corresponde a la materia de Ingeniería de Sistemas, y es una asignatura optativa, útil para todos los alumnos del Master, independientemente de su perfil. Esta asignatura utiliza muchos de los conocimientos adquiridos por los alumnos a lo largo del master y los utiliza para detectar si el proceso sobre el que se está trabajando está en condiciones normales de operación o existe algún fallo, y en el caso de que exista fallo hay que tratar de diagnosticar la causa del mismo.

1.2 Relación con otras materias

Utiliza conocimientos de otras materias para desarrollar esta asignatura como: sistemas dinámicos, sistemas inteligentes, simulación, etc

1.3 Prerrequisitos

Conocimientos básicos de programación en Matlab, etc

2. Competencias

2.1 Generales

CB1. Haber adquirido conocimientos avanzados y demostrado, en un contexto de investigación científica y tecnológica o altamente especializado, una comprensión detallada y fundamentada de los aspectos teóricos y prácticos y de la metodología de trabajo en uno o más campos de estudio.

CB2. Saber aplicar e integrar sus conocimientos, la comprensión de estos, su fundamentación científica y sus capacidades de resolución de problemas en entornos nuevos y definidos de forma imprecisa, incluyendo contextos de carácter multidisciplinar tanto investigadores como profesionales altamente especializados.

CB3. Saber evaluar y seleccionar la teoría científica adecuada y la metodología precisa de sus campos de estudio para formular juicios a partir de información incompleta o limitada incluyendo, cuando sea preciso y pertinente, una reflexión sobre la responsabilidad social o ética ligada a la solución que se proponga en cada caso.

CB4. Ser capaces de predecir y controlar la evolución de situaciones complejas mediante el desarrollo de nuevas e innovadoras metodologías de trabajo adaptadas al ámbito científico/investigador, tecnológico o profesional concreto, en general multidisciplinar, en el que se desarrolle su actividad.

2.2 Específicas

CE9.- Tener el dominio de las habilidades y métodos de investigación en las áreas propias de este Master, Ingeniería de Sistemas y Automática e Ingeniería Química y Tecnología del Medio Ambiente.

COP1.- Capacidad de diseñar y desarrollar un sistema de monitorización de un sistema industrial que incluya la toma de datos, el preprocesamiento de los mismos y la implementación del método de detección de fallos más adecuado a ese sistema.

COP2.-Capacidad de implementación de un método de control tolerante a fallos

3. Objetivos

- Conocer que es un sistema de detección y diagnóstico de fallos y por qué es necesario en un sistema industrial
- Conocer los métodos de detección de fallos más utilizados: basados en modelos (redundancia analítica), basados en datos (métodos estadísticos multivariantes), basados en inteligencia artificial (redes neuronales, y sistemas neuroborrosos).
- Conocer los métodos más utilizados de control tolerante a fallos.

 Ser capaces de aplicar los métodos estudiados a distintos sistemas industriales: reales y en simulación.

4. Contenidos y/o bloques temáticos

Bloque 1: Métodos de detección, diagnóstico y control tolerante a fallos

Carga de trabajo en créditos ECTS:

a. Contextualización y justificación

Estudiar los métodos de detección y diagnóstico de fallos más usados en la práctica industrial, para detectar si el sistema automático funciona bien o hay alguna anomalía/fallo. En caso de que exista un fallo, diagnosticar cuál es el elemento que ha fallado, y en qué tiempo ocurrió el fallo. El siguiente paso será dar recomendaciones al usuario de cómo seguir funcionado adecuadamente a pesar del fallo, es decir incluir la tolerancia al fallo en el sistema.

b. Objetivos de aprendizaje

- Conocer que es un sistema de detección y diagnóstico de fallos y por qué es necesario en un sistema industrial.
- Conocer los métodos de detección de fallos más utilizados: basados en modelos (redundancia analítica), basados en datos (métodos estadísticos multivariantes), basados en inteligencia artificial (redes neuronales, y sistemas neuroborrosos.
- Conocer los métodos más utilizados de control tolerante a fallos
- Ser capaces de aplicar los métodos estudiados a distintos sistemas industriales: reales y en simulación.

c. Contenidos

- Introducción: Motivación y necesidad de la detección y diagnóstico de fallos. Objetivos.
 Clasificación de los métodos. Ejemplos.
- Métodos basados en la Redundancia Analítica: Arquitectura del sistema, Métodos estadísticos: Método GLR, SPRT, modelo múltiple etc. Métodos de estimación de parámetros. Métodos de ecuaciones de paridad. Métodos basados en observadores de estado.
- 3. Métodos estadísticos multivariantes (métodos basados en datos)
- 4. Métodos de detección y diagnóstico de fallos basados en soft-computing.
- 5. Control tolerante a fallos.

d. Métodos docentes

La metodología docente utilizada en el desarrollo de la asignatura se puede concretar en lo siguiente.

- Método expositivo.
- Análisis y Resolución de casos de estudio.
- Aprendizaje mediante experiencias.

e. Plan de trabajo

Semana 13	Semana 14	Semana 15
5T+5L	5T+5L	5T+5A

4 días a la semana, en sesiones de 2,5 horas diarias cada una a partir de la Semana 13 del máster hasta la semana 15

f. Evaluación

(Ver apartado 7)

g. Bibliografía básica

- J. Chen and R.J. Patton (1999), Robust model-based fault diagnosis for dynamic systems, Kluwer Academic Publishers.
- E. L. Rusell, L.H. Chiang, R.D. Braatz, Data driven techniques for fault detection and diagnosis in chemical processes, Springer-Verlag col. Advances in Industrial Control, 2000
- M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki (2003). Diagnosis and Fault-Tolerant Control. Springer
- J. Korbicz, J. M. Koscielny, Z. Kowalczuk and W. Cholewa (2004). Fault Diagnosis. Models, Artificial Intelligence, Applications. Springer
- T. Escobet, A. Bregon, B. Pulido and V. Puig (2019). Fault Diagnosis of Dynamic Systems. Quantitative and Qualitative Approaches. Sringer

h. Bibliografía complementaria

i. Recursos necesarios

Pizarra

Ordenador / Cañón

Plantas reales, ordenadores y el software adecuado para realizar las prácticas de laboratorio

j. Temporalización

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
3	Semanas 13-15 del curso en el 1er cuatrimestre

5. Métodos docentes y principios metodológicos

La metodología docente utilizada en el desarrollo de la asignatura se puede concretar en lo siguiente.

- Método expositivo.
- Análisis y Resolución de casos de estudio.
- Aprendizaje mediante experiencias.

6. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teórico-prácticas (T/M)	15	Estudio y trabajo autónomo individual	30
Clases prácticas de aula (A)	5	Estudio y trabajo autónomo grupal	15
Laboratorios (L)	1		
Prácticas externas, clínicas o de campo			
Seminarios (S)			
Tutorías grupales (TG)			
Evaluación			
Total presencial	30	Total no presencial	45

7. Sistema y características de la evaluación

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Proyecto	80%	Realización de un proyecto individual sobre alguno de los métodos vistos en teoría
Prácticas	20%	Exposición del trabajo realizado, así como los ejercicios realizados en el laboratorio

CRITERIOS DE CALIFICACIÓN

- Convocatoria ordinaria:
 - o Basada en la tabla anterior
- Convocatoria extraordinaria:
 - Igual que la ordinaria, basada en la tabla anterior

8. Consideraciones finales