

Proyecto/Guía docente de la asignatura Procesos en Ingeniería Ambiental

|                                      | 1                                                                                                                    | ,             |             |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------|-------------|
| Asignatura                           | PROCESOS EN INGENIERÍA AMBIENTAL                                                                                     |               |             |
| Materia                              | PROCESOS EN INGENIERÍA AMBIENTAL                                                                                     |               |             |
| Módulo                               |                                                                                                                      |               |             |
| Titulación                           | MASTER INGENIERÍA AMBIENTAL                                                                                          |               |             |
| Plan                                 | 526                                                                                                                  | Código        | 53445       |
| Periodo de impartición               | Tres primeras semanas                                                                                                | Tipo/Carácter | OBLIGATORIA |
| Nivel/Ciclo                          |                                                                                                                      | Curso         | 1°          |
| Créditos ECTS                        | 6                                                                                                                    |               |             |
| Lengua en que se imparte             | CASTELLANO                                                                                                           |               |             |
| Profesor/es responsable/s            | Silvia Bolado, Mª Sol Vega, Jose Mª del Arco Montero, Olga López<br>Carcelén                                         |               |             |
| Datos de contacto (E-mail, teléfono) | silvia@iq.uva.es, solvega@qa.uva.es, chear@agro.uva.es, olgalc@agro.uva.es                                           |               |             |
| Departamento                         | Departamento de ingeniería Química y TMA, Departamento de Química Analítica, Departamento de Ciencias Agroforestales |               |             |





### 1. Situación / Sentido de la Asignatura

#### 1.1 Contextualización

Puesto que se trata de un Master con acceso de estudiantes de diferentes titulaciones y formaciones, esta asignatura aborda los principios de los procesos de Ingeniería Ambiental desde diferentes perspectivas: ingenieril, química, biológica y edafológica, para proporcionar un panorama general del Master a los estudiantes.

### 1.2 Relación con otras materias

Asignatura básica, que proporciona las competencias necesarias para el desarrollo del resto de las asignaturas del Master

### 1.3 Prerrequisitos

No tiene

#### 2. Competencias

#### 2.1 Generales

G1 Poseer y comprender conocimientos avanzados.

### 2.2 Específicas

E1 Capacidad para identificar y enunciar problemas ambientales.

E2 Conocer las bases científicas y tecnológicas de la tecnología ambiental.

#### 3. Objetivos

- Desarrollar una visión general de la ingeniería ambiental.
- Conocer las principales referencias legislativas en materia de medio ambiente
- Conocer y saber aplicar los diferentes tipos de equilibrios químicos y entre fases en los que se basan los procesos ambientales
- Conocer las ecuaciones que representan la difusión y transferencia de materia.
- Interpretar las representaciones más usuales de los procesos ambientales
- Plantear y resolver balances de materia y energía en procesos ambientales
- Desarrollar y aplicar las ecuaciones básicas de los reactores ideales para diferentes cinéticas
- Llevar a cabo cálculos básicos de dimensionado de sistemas de flujo de fluidos
- Conocer los tipos de microorganismos implicados en los sistemas de tratamiento, su metabolismo, bioindicadores y las técnicas para su caracterización
- Comprender los diversos procesos ecológicos involucrados en los sistemas ambientales.
- Adquirir una base de los componentes del suelo y los procesos edáficos
- Conocer las propiedades del suelo como posibles indicadores de su calidad, para entender mejor su funcionamiento y procesos de degradación.



### 4. Contenidos y/o bloques temáticos

### Bloque 1: Ingeniería ambiental

Carga de trabajo en créditos ECTS:

2,5

#### a. Contextualización y justificación

Introduce los aspectos ingenieriles de la ingeniería Ambiental

### b. Objetivos de aprendizaje

- Desarrollar una visión general de la ingeniería ambiental.
- Conocer las principales referencias legislativas en materia de medio ambiente
- Conocer las ecuaciones que representan la difusión y transferencia de materia.
- Interpretar las representaciones más usuales de los procesos ambientales
- Plantear y resolver balances de materia y energía en procesos ambientales
- Desarrollar y aplicar las ecuaciones básicas de los reactores ideales para diferentes cinéticas
- Llevar a cabo cálculos básicos de dimensionado de sistemas de flujo de fluidos

# c. Contenidos

## TEMA 1: Estudio y análisis de procesos ambientales.

Introducción a la Ingeniería Ambiental. Minimización. Legislación ambiental. Descripción de procesos habituales en Ingeniería Ambiental. Diagramas de bloques. Diagramas de flujo. Balances de materia y energía.

#### TEMA 2: Transferencia de materia

Mecanismos de transporte de materia. Transporte de interfase. Operaciones basadas en Transferencia de Materia: Absorción, Adsorción, Operaciones con membranas.

#### **TEMA 3: Reactores químicos**

Cinética de las reacciones. Reactor discontinuo de tanque agitado. Reactor continuo de tanque agitado. Reactor tubular. Reactores bioquímicos.

#### **TEMA 4: Mecánica de fluidos**

Ecuación de continuidad. Balance de energía. Pérdidas por rozamiento. Bombeo de fluidos. Canales abiertos. Operaciones Unitarias Sólido-Fluido: Lechos porosos, Lechos fluidizados, Sedimentación, Filtración, Centrifugación.

#### d. Métodos docentes

Clases teóricas (10 h), clases de problemas en aula (6 h), clases de laboratorio informático (3 h), seminarios (6 h)

#### . e. Plan de trabajo

Combinación de clases teóricas con actividades participativas, resolución de problemas, discusión de resultados y trabajo tutorizado del alumno en sesiones de 2 horas de forma intensiva en las 3 primeras semanas del curso. Entrega semanal de tareas evaluables.

#### f. Evaluación

De acuerdo con instrumentos y criterios del apartado 7



Universidad de Valladolid



### g. Bibliografía básica

G. CALLEJA PARDO, F. GARCÍA HERRUZO, A. DE LUCAS MARTÍNEZ, D.PRATS RICO, J.M. RODRÍGUEZ MAROTO. "Introducción a la Ingeniería Química". Editorial Síntesis (2008).

### h. Bibliografía complementaria

- R. M. FELDER, R. W. ROUSSEAU "Principios elementales de los procesos químicos. Limusa Wiley (2003).
- G. KIELY. "Environmental Engineering". Mc Graw-Hill (2007).
- H. S. PEAVY, D.R. ROWE, G. TCHOBANOGLOUS. "Environmental Engineering". Mc Graw-Hill International Editions (1985).
- W.J. WEBER, Jr. "Environmental Systems and Processes" S. John Wiley & Sons (2001)

#### i. Recursos necesarios

Aula con proyector y ordenadores para los estudiantes. Acceso al Campus virtual

## j. Temporalización

| CARGA ECTS | PERIODO PREVISTO DE DESARROLLO  |
|------------|---------------------------------|
| 2.5        | Tres primeras semanas del curso |

# **Bioque 2: QUÍMICA AMBIENTAL**

Carga de trabajo en créditos ECTS:

### a. Contextualización y justificación

Introduce los aspectos químicos de la ingeniería Ambiental

## Objetivos de aprendizaje

- Desarrollar una visión general de la química ambiental.
- Conocer los aspectos termodinámicos de la reacción química
- Conocer y predecir las reacciones químicas en disolución y en las interfases sólido/líquido y líquido/gas.
- Calcular las concentraciones de las especies presentes en el equilibrio
- Interpretar diagramas de áreas de predominio
- Proponer una reacción química adecuada para producir o eliminar una especie química

#### c. Contenidos

## TEMA 5: Equilibrios químicos en la hidrosfera.

Actividad y concentración. Efecto de las sales sobre la constante de equilibrio. Equilibrios ácido-base: pH, fuerza de ácidos y bases, disoluciones reguladoras de pH, diagramas de distribución de especies. Equilibrios de formación de complejos: complejación de metales por sustancias quelatantes, dureza del



agua. Equilibrios de oxidación-reducción: constante de equilibrio y potencial de equilibrio de una reacción redox, diagramas Eh-pH.

# TEMA 6: Equilibrios químicos heterogéneos.

Equilibrios de solubilidad. La materia coloidal. Reacciones de adsorción-desorción. Equilibrios de intercambio iónico. Equilibrios de reparto. Solubilidad de gases en agua.

#### d. Métodos docentes

Clases teóricas (6 h), clases de problemas en aula (8 h)

# e. Plan de trabajo

Combinación de clases teóricas con actividades participativas, resolución de problemas, discusión de resultados y trabajo tutorizado del alumno en sesiones de 2 horas de forma intensiva en las 3 primeras semanas del curso. Entrega semanal de tareas evaluables.

### f. Evaluación

De acuerdo con instrumentos y criterios del apartado 7

### g. Bibliografía básica

J. C. ÁVILA, R.A. FERNÁNDEZ, E.J. ALONSO, J.E. FERNÁNDEZ. "Equilibrios químicos en disolución: Aplicaciones Analíticas". Universidad de Granada (2005)

S.E. MANAHAN. "Introducción a la química ambiental". Ed. Reverté (2007).

## h. Bibliografía complementaria

# i. Recursos necesarios

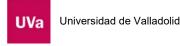
Aula con proyector y ordenadores para los estudiantes. Acceso al Campus virtual

### j. Temporalización

| CARGA ECTS | PERIODO PREVISTO DE DESARROLLO  |
|------------|---------------------------------|
| 1.4        | Tres primeras semanas del curso |

### **Bloque 3: ECOLOGÍA AMBIENTAL**

Carga de trabajo en créditos ECTS:


1.5

### a. Contextualización y justificación

Introduce los aspectos biológicos de la Ingeniería Ambiental

### b. Objetivos de aprendizaje

• Desarrollar una visión general de la ingeniería ambiental.





- Conocer los tipos de microorganismos implicados en los sistemas de tratamiento, su metabolismo, bioindicadores y las técnicas para su caracterización
- Comprender los diversos procesos ecológicos involucrados en los sistemas ambientales.

#### c. Contenidos

### **TEMA 7: Estudio de poblaciones**

Descripción del ecosistema. Papel de las poblaciones en el ecosistema Estructura de poblaciones. Dinámica de poblaciones. Interacción entre poblaciones Bioindicadores. Biodiversidad

#### TEMA 8: Producción en los ecosistemas

Producción primaria y secundaria. Producción bruta y neta. Biomasa. Productividad en los ecosistemas. Flujos de energía y nutrientes

Microbiología ambiental: Microorganismos en los procesos biológicos de tratamiento

#### d. Métodos docentes

Clases teóricas (6 h), clases de problemas en aula (5 h), clases de laboratorio informático (2 h), seminarios (2 h)

### e. Plan de trabajo

Combinación de clases teóricas con actividades participativas, resolución de problemas, discusión de resultados y trabajo tutorizado del alumno en sesiones de 2 horas de forma intensiva en las 3 primeras semanas del curso. Entrega semanal de tareas evaluables.

#### f. Evaluación

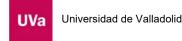
De acuerdo con instrumentos y criterios del apartado 7

# g. Bibliografía básica

KREBS, CH.J. "Ecología. Análisis experimental de la distribución y abundancia (1ª ed)". Pirámide, Madrid. I.S.B.N.: 84-368-0315-91986. (1986)

#### h. Bibliografía complementaria

BEGON, M., HARPER, J.L, TOWNSEND, C.R. "Ecology – From Individuals to Ecosystems (4th ed.)". Wiley-Blackwell, Oxford.Odum1972 (2005-6)


SMITH, R.L. & SMITH, T.M. "Ecología (4ª ed.)." Pearson Education, S.A. Madrid. (Traducido al español de Elements of Ecology). I.S.B.N.: 84-7829-040-0. (2007).

#### i. Recursos necesarios

Aula con proyector y ordenadores para los estudiantes. Acceso al Campus virtual

### j. Temporalización

| CARGA ECTS | PERIODO PREVISTO DE DESARROLLO  |
|------------|---------------------------------|
| 1.5        | Tres primeras semanas del curso |





## Bloque 4: EDAFOLOGÍA

Carga de trabajo en créditos ECTS:

0.6

# a. Contextualización y justificación

Introduce los aspectos sobre suelos de aplicación en Ingeniería Ambiental

### b. Objetivos de aprendizaje

- Desarrollar una visión general de la ingeniería ambiental.
- Adquirir una base de los componentes del suelo y los procesos edáficos
- Conocer las propiedades del suelo como posibles indicadores de su calidad, para entender mejor su funcionamiento y procesos de degradación.

#### c. Contenidos

# TEMA 9: Edafología

Constituyentes del suelo. Procesos de formación. El perfil del suelo. Propiedades físicas. Propiedades químicas. Propiedades biológicas.

### d. Métodos docentes

Clases teóricas (3 h), clases de problemas en aula (1 h), seminarios (2 h)

### e. Plan de trabajo

3 sesiones de 2 horas en las tres primeras semanas del curso con cuestionarios a realizar en casa después de cada sesión

### f. Evaluación

De acuerdo con instrumentos y criterios del apartado 7

# g. Bibliografía básica

PORTA, J., LÓPEZ ACEVEDO, M., POCH, R. "Edafología. Uso y protección del suelo". Mundiprensa, (2014).

### h. Bibliografía complementaria

DOMENECH, X., PERAL, J. "Química Ambiental de sistemas terrestres". Reverte (2006)

### i. Recursos necesarios

Aula con proyector y ordenadores para los estudiantes.

Acceso al Campus virtual

### j. Temporalización

| CARGA ECTS | PERIODO PREVISTO DE DESARROLLO  |
|------------|---------------------------------|
| 0.6        | Tres primeras semanas del curso |





### 5. Métodos docentes y principios metodológicos

La asignatura se imparte en forma intensiva, durante 4 horas diarias, combinando actividades de diferentes bloques en grupos de 2 horas. En cada grupo de 2 horas, se combinan diferentes métodos docentes, con un tiempo dedicado a clases teóricas o exposición de contenidos usando como apoyo presentaciones en power point y tiempo de trabajo en problemas o seminarios o utilización de herramientas informáticas con un tiempo final de discusión y puesta en común de resultados.

- Clases de aula teóricas: En las clases se presentan los fundamentos teóricos de cada tema, teniendo en cuenta los objetivos establecidos previamente y las competencias que los alumnos deben adquirir. Todos los contenidos se acompañan de ejemplos reales.
- Clases de aula de problemas: Las clases prácticas, de resolución de problemas y cuestiones, tienen como finalidad profundizar en los contenidos de los temas, mediante el análisis y aplicación de los contenidos teóricos. Para cada tema, el profesor proporciona una colección de problemas y cuestiones, algunos de los cuales se resuelven y discuten en clase.
- Seminarios. Clases destinadas prioritariamente al fomento del trabajo autónomo de los estudiantes, a la orientación de las tareas propuestas y a las actividades de trabajo en grupos.
- Laboratorio informático Clases prácticas, de resolución de problemas y casos, que por su mayor complejidad o por requerir de un software específico se realizan empleando ordenadores.
- Web aula virtual: Todo el contenido del curso se encuentra disponible en el Campus Virtual UVa (http://campusvirtual.uva.es).

### 6. Tabla de dedicación del estudiante a la asignatura

| ACTIVIDADES                     | HORA | ACTIVIDADES NO                    | HORA |
|---------------------------------|------|-----------------------------------|------|
| PRESENCIALES                    | S    | PRESENCIALES                      | S    |
| Clases de aula teóricas: Método | 25   | Trabajo autónomo: Estudio/trabajo | 65   |
| expositivo.                     | 2    | Trabajo autonomo. Estudio/trabajo | 00   |
| Clases de aula de problemas:    |      | Trabajo en grupo: Resolución de   | 2//  |
| Resolución de ejercicios y      | 20   | casos propuestos. Aprendizaje     | 25   |
| problemas                       |      | cooperativo                       | 75   |
| Laboratorio informático         | 5    | (35/ 1/4)                         | 100  |
| Seminarios/Tutorías             | 10   | 7-3                               |      |
| Total presencial                | 60   | Total no presencial               | 90   |

### 7. Sistema y características de la evaluación

| INSTRUMENTO/PROCEDIMIENTO | PESO EN<br>LA NOTA<br>FINAL | OBSERVACIONES                                                                                                                                                                                                           |
|---------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXAMEN FINAL              | 50%                         | Prueba escrita que constará de 2-3 problemas y de cuestiones teórico-prácticas. El examen se estructurará en 4 apartados correspondientes a los bloques temáticos de la asignatura. Cada apartado contribuirá a la nota |



|                        |     | del examen final proporcionalmente a<br>su carga docente. Se exige una nota<br>mínima de un 30%, en cada uno de<br>los cuatro apartados del examen. |
|------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| TAREAS y CUESTIONARIO  | 40% | Durante el periodo de desarrollo de la asignatura se propondrán varias tareas, para realizar de forma individual o en grupo.                        |
| PARTICIPACIÓN EN CLASE | 10% | Se evaluará la participación y aportaciones realizadas por los alumnos en las diferentes actividades presenciales.                                  |

# CRITERIOS DE CALIFICACIÓN

- Convocatoria ordinaria:
  - o Examen final 50%, tareas y cuestionarios 40%, Participación en clase 10%
- Convocatoria extraordinaria:
  - o Examen final 50%, tareas y cuestionarios 40%, Participación en clase 10%

