

Proyecto/Guía docente de la asignatura

Asignatura	MATEMÁTICA DISCRETA			
Materia	MATEMÁTICAS			
Módulo				
Titulación	GRADO EN ESTADÍSTICA			
Plan	549 Código 47072			
Periodo de impartición	1º CUATRIMESTRE	Tipo/Carácter	FORMACIÓN BÁSICA	
Nivel/Ciclo	GRADO	Curso	1º	
Créditos ECTS	6 ECTS			
Lengua en que se imparte	ESPAÑOL			
Profesor/es responsable/s	JOSÉ ANTONIO ABIA VIÁN			
Datos de contacto (E- mail, teléfono)	José Antonio Abia Vián: antonio@mat.uva.es , despacho E.I.Informática 2D037, Tfno: 983423730 / 983184546			
Departamento	MATEMÁTICA APLICADA			

1. Situación / Sentido de la Asignatura

1.1 Contextualización

1.2 Relación con otras materias

1.3 Prerrequisitos

2. Competencias

Las competencias y actividades formativas que figuran en esta guía corresponden a las de la memoria del Grado en Estadística. Éstas se pueden considerar asimilables a las competencias que se alcanzarían en el Grado en Ingeniería Informática.

2.1 Generales

- G1. Capacidad para la gestión de la información
- G2. Capacidad para la abstracción y el razonamiento crítico
- G3. Capacidad para la puesta al día y el auto-aprendizaje

2.2 Específicas

- E4. Análisis de resultados, interpretación y validación de modelos
- E5. Extracción de conclusiones
- E6. Presentación y comunicación de resultados

2.3 Transversales

Instrumentales

- I1. Capacidad de análisis y síntesis
- 12. Capacidad de gestión de la información
- 13. Capacidad de organización y planificación
- 14. Conocimientos de informática relativos al ámbito de estudio
- 15. Resolución de problemas
- 16. Comunicación oral y escrita en lengua nativa
- 18. Toma de decisiones

Personales

- P2. Razonamiento crítico
- P4. Compromiso ético

Sistémicas

- S1. Aprendizaje autónomo
- \$2. Adaptación a nuevas situaciones
- S3. Motivación por el trabajo bien hecho
- **S4**. Iniciativa y espíritu emprendedor
- **S5**. Creatividad

3. Objetivos (Resultados de aprendizaje)

- Comprender y dominar los conceptos básicos de la matemática discreta y lógica.
- Adquirir aptitudes para aplicar eficazmente conceptos y procedimientos matemáticos en el planteamiento y la resolución de problemas propios de la Estadística.
- Conocer y utilizar software matemático en la resolución de problemas para analizar, modelar, manipular y diseñar aplicaciones prácticas de Estadística.
- Conocer y utilizar adecuadamente el lenguaje matemático.

4. Contenidos y/o bloques temáticos

Bloque 1: LÓGICA

Carga de trabajo en créditos ECTS: 1,2

a. Contextualización y justificación

b. Objetivos de aprendizaje

Al finalizar esta unidad, el alumno deberá ser capaz de:

- Expresar correctamente cuantas definiciones de conceptos aparezcan en esta unidad y distinguir si un objeto pertenece o no a la clase descrita.
- Simbolizar enunciados diversos en el campo de la lógica.
- Analizar la validez de un teorema.
- Proporcionar contraejemplos cuando sea necesario.
- Utilizar distintos métodos de demostración.
- Elaborar una demostración formal para un teorema.
- Hacer demostraciones utilizando la inducción matemática.

c. Contenidos

- 1. Proposiciones y Predicados. Operadores lógicos y Cuantificadores.
- 2. Equivalencias. Implicaciones. Teoremas.
- 3. Demostraciones.
- 4. Inducción matemática.

d. Métodos docentes

(Ver punto 5 de esta guía)

e. Plan de trabajo

f. Evaluación

(Ver punto 7 de esta guía)

g. Bibliografía básica

[GRIM] Capítulo 2 [ROSS] Capítulos 2 y 6

h. Bibliografía complementaria

[ROSE] Capítulos 1 y 3

i. Recursos necesarios

Apuntes de la asignatura Lista de problemas

j. Temporalización

BLOQUE TEMÁTICO	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
LÓGICA	1,2	Semanas 1 a 3

UVa U

Bloque 2: COMBINATORIA

Carga de trabajo en créditos ECTS: 1,6

a. Contextualización y justificación

b. Objetivos de aprendizaje

Al finalizar esta unidad, el alumno deberá ser capaz de:

- Expresar correctamente cuantas definiciones de conceptos aparezcan en esta unidad y distinguir si un objeto pertenece o no a la clase descrita.
- Utilizar con soltura las técnicas de conteo vistas en la unidad
- Interpretar los distintos tipos de problemas de combinatoria.
- Resolver problemas de conteo.
- Modelizar determinados tipos de problemas utilizando relaciones de recurrencia.
- Resolver ecuaciones de recurrencias lineales.

c. Contenidos

- 1. Conjuntos. Operaciones. Propiedades.
- 2. Conjuntos infinitos
- 3. Principios básicos de conteo.
- 4. Variaciones. Permutaciones. Combinaciones.
- 5. Principio de inclusión-exclusión.
- 6. Distribución de objetos en recipientes.
- 7. Relaciones de recurrencia.

d. Métodos docentes

(Ver punto 5 de esta guía)

e. Plan de trabajo

f. Evaluación

(Ver punto 7 de esta guía)

g. Bibliografía básica

[GRIM] Capítulos 1, 3, 5, 8 y 10 [ROSS] Capítulos 1, 3 y 5

h. Bibliografía complementaria

[ROSE] Capítulos 1, 3, 4 y 6

i. Recursos necesarios

Apuntes de la asignatura Lista de problemas

j. Temporalización

BLOQUE TEMÁTICO	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
COMBINATORIA	1,6	Semanas 4 a 7

Bloque 3: RELACIONES

Carga de trabajo en créditos ECTS: 1,3

a. Contextualización y justificación

b. Objetivos de aprendizaje

Al finalizar esta unidad, el alumno deberá ser capaz de:

- Expresar correctamente cuantas definiciones de conceptos aparezcan en esta unidad y distinguir si un objeto pertenece o no a la clase descrita.
- Manejar la representación matricial de las relaciones para operar con ellas y analizar sus propiedades.
- Representar relaciones de orden mediante diagramas de Hasse.
- Identificar los elementos notables de un conjunto parcialmente ordenado.
- Determinar las clases y el conjunto cociente de una relación de equivalencia.
- Hallar la mínima relación de equivalencia que contiene a una dada.
- Calcular el ínfimo y el supremo de dos relaciones de equivalencia y conocer su conexión con el retículo de las particiones.

c. Contenidos

- 1. Relaciones binarias. Operaciones. Matriz de una relación.
- 2. Relaciones de orden.
- 3. Relaciones de equivalencia.
- 4. Cierres. El retículo de las particiones.

d. Métodos docentes

(Ver punto 5 de esta guía)

e. Plan de trabajo

f. Evaluación

(Ver punto 7 de esta guía)

g. Bibliografía básica

[GRIM] Capítulo 7 [ROSS] Capítulo 7

h. Bibliografía complementaria

[ROSE] Capítulo 7

i. Recursos necesarios

Apuntes de la asignatura Lista de problemas

j. Temporalización

BLOQUE TEMÁTICO	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
RELACIONES	1,3	Semanas 8 a 11

Bloque 4: GRAFOS

Carga de trabajo en créditos ECTS: 1,3

a. Contextualización y justificación

b. Objetivos de aprendizaje

Al finalizar esta unidad, el alumno deberá ser capaz de:

- Expresar correctamente cuantas definiciones de conceptos aparezcan en esta unidad y distinguir si un objeto pertenece o no a la clase descrita
- Determinar si dos grafos son isomorfos.
- Reconocer propiedades de un grafo a partir de su representación matricial.
- Reconocer si un grafo es euleriano.
- Aplicar el algoritmo de Fleury en los problemas de recorrido de aristas.
- Reconocer si un grafo es hamiltoniano.
- Aplicar los algoritmos de Dijkstra y Warshall para la obtención de caminos óptimos en un grafo pesado.
- Construir etiquetados naturalmente ordenados para digrafos acíclicos diferenciando si es por niveles o no.
- Aplicar los algoritmos de Kruskal y Prim para obtener árboles generadores mínimos.
- Resolver problemas que se modelan con grafos utilizando los algoritmos adecuados en cada caso.

c. Contenidos

- 1. Grafos dirigidos y no dirigidos. Matriz de un grafo.
- 2. Isomorfismo de grafos.
- 3. Recorrido de grafos. Problemas eulerianos y hamiltonianos.
- 4. Grafos pesados. Caminos óptimos.
- 5. Grafos acíclicos.
- 6. Árboles.

d. Métodos docentes

(Ver punto 5 de esta guía)

e. Plan de trabajo

f. Evaluación

(Ver punto 7 de esta guía)

g. Bibliografía básica

[GRIM] Capítulos 11, 12 y 13. [ROSS] Capítulos 8 y 9.

h. Bibliografía complementaria

[ROSE] Capítulos 8 y 9.

i. Recursos necesarios

Apuntes de la asignatura Lista de problemas

j. Temporalización

BLOQUE TEMÁTICO	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
GRAFOS	1,3	Semanas 11 a 14

Bioque 5: ARITMÉTICA ENTERA Y MODULAR

Carga de trabajo en créditos ECTS: 0,6

a. Contextualización y justificación

b. Objetivos de aprendizaje

Al finalizar esta unidad, el alumno deberá ser capaz de:

- Expresar correctamente cuantas definiciones de conceptos aparezcan en esta unidad y distinguir si un objeto pertenece o no a la clase descrita.
- Resolver ecuaciones diofánticas a partir del algoritmo de Euclides.
- Reducir un entero respecto de un módulo dado.
- Estudiar cuando una congruencia lineal tiene solución y en su caso resolverla expresando la solución en distintos módulos.
- Resolver sistemas de congruencias lineales.

c. Contenidos

- 1. Divisibilidad entera. Algoritmo de Euclides. Ecuación diofántica.
- 2. Congruencias. Propiedades.
- 3. Resolución de congruencias lineales.
- 4. Sistemas de congruencias lineales.

d. Métodos docentes

(Ver punto 5 de esta guía)

e. Plan de trabajo

f. Evaluación

(Ver punto 7 de esta guía)

g. Bibliografía básica

[GRIM] Capítulo 4 [MATT] Capítulos 6 y 7

h. Bibliografía complementaria

[ROSE] Capítulo 2

i. Recursos necesarios

Apuntes de la asignatura Lista de problemas

j. Temporalización

BLOQUE TEMÁTICO	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
ARITMÉTICA ENTERA Y MODULAR	0,6	Semanas 14 a 15

5. Métodos docentes y principios metodológicos

- Sesiones de aula
 - o Clases magistrales participativas y expositivas
 - Aprendizaje basado en problemas
- Prácticas supervisadas
 - o Resolución de problemas.
 - Aprendizaje basado en problemas

6. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teórico-prácticas (T/M)	28	Estudio y trabajo autónomo individual	80
Clases prácticas de aula (A)		Estudio y trabajo autónomo grupal 10	
Laboratorios (L)	30		
Seminarios (S)			
Tutorías grupales (TG)			
Evaluación	2		
Total presencial	60	Total no presencial	90

7. Sistemas y características de la evaluación

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Actividades de Evaluación Continua (pruebas escritas, tareas, intervenciones en clase, exposiciones, trabajos individual o en equipo,)	60%	Se realizarán a lo largo del cuatrimestre y se detallarán por los profesores de cada grupo.
Examen final escrito (ordinario/extraordinario)	40% o 100%	En los criterios de calificación se especifica el peso de este examen final en la nota definitiva de la asignatura

CRITERIOS DE CALIFICACIÓN

Convocatoria ordinaria:

- La calificación final será la máxima de las siguientes:
 - suma ponderada de las notas obtenidas en las actividades de evaluación continua (60%) y el examen final con peso del 40%.
 - o nota obtenida en el examen final calificado sobre 10 puntos.
- Se considerarán presentados aquellos alumnos que entreguen el examen final.
- Así mismo se considerarán presentados los alumnos que obtengan una calificación mayor o igual que 5 sin haber entregado el examen final.

Convocatoria extraordinaria: Mismos criterios que en convocatoria ordinaria.

Universidad de Valladolid

8. Consideraciones finales

8.1 BIBLIOGRAFÍA

Grimaldi, R.P. Matemáticas Discreta y Combinatoria". Ed. Addison-Wesley Iberoamericana, 1998. [GRIM]

[MATT]

Mattson, H.F,Jr. ``Discrete Mathematics". Ed. Wiley, 1993. Rosen, K.H. ``Matemática Discreta y sus aplicaciones". Ed. McGraw-Hill, 2004. [ROSE]

[ROSS] Ross, K.A.-Wright, R.B. ``Matemáticas Discretas". Ed. Prentice-Hall. Hispanoamericana, 1990.

8.2 MATERIAL DE APOYO Y OTROS RECURSOS

Los materiales y recursos necesarios para cursar esta asignatura (apuntes, listas de problemas, artículos,...) estarán disponibles en la plataforma Moodle de la E.I Informática (www.inf.uva.es -> Aula Virtual) o en la plataforma de la Uva (<u>www.uva.es</u> → campus virtual) según indique el profesor del grupo en la presentación. Este medio se utilizará también para comunicar al alumno información relativa a la asignatura, así como detalles de las actividades propuestas para la evaluación continua y la publicación de calificaciones parciales y finales.

8.3 CRONOGRAMA

El cronograma de actividades con sus fechas definitivas se publicará en la plataforma Moodle utilizada para la

asignatura en cada grupo y se ajustará a la siguiente temporalización por bloques temáticos:

BLOQUE TEMÁTICO	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
LÓGICA	1,2	Semanas 1 a 3
COMBINATORIA	1,6	Semanas 4 a 7
RELACIONES	1,3	Semanas 8 a 11
GRAFOS	1,3	Semanas 11 a 14
ARITMÉTICA ENTERA Y MODULAR	0,6	Semanas 14 a 15

