

Proyect/Guía docente de la asignatura. Curso 2019-2020

Asignatura	FÍSICA APLICADA Y BASES DE FISIOLOGÍA		
Materia	FÍSICA, BIOQUÍMICA Y BASES DE FISIOLOGÍA		
Módulo	MATERIAS OBLIGATORIAS		
Titulación	GRADO DE FISIOTERAPIA		
Plan	555	Código	41386
Periodo de impartición	ANUAL	Tipo/Carácter	ОВ
Nivel/Ciclo	GRADO	Curso	1º
Créditos ECTS	7,5		
Lengua en que se imparte	CASTELLANO		
Profesor/es responsable/s	FRANCISCO JOSÉ NAVAS CÁMARA, VICTOR ALONSO GÓMEZ		
Datos de contacto (E-mail, teléfono)	finavas@bio.uva.es victor.alonso.gomez@uva.es		
Departamentos	 BIOQUÍMICA, BIOLOGÍA MOLECULAR Y FISIOLOGÍA, FÍSICA APLICADA 		

1. Situación / Sentido de la Asignatura

1.1 Contextualización

Dentro de la materia obligatoria Física, Bioquímica y Bases de Fisiología, la asignatura "Física aplicada y Bases de Fisiología" (4,5+3 =7,5 ECTS) complementa al conjunto de Materias básicas de la rama de Ciencias de la salud. No puede entenderse el abordaje, por una parte de la Fisiología Humana y de materias clínicas y, por otra, de los fundamentos de Fisioterapia y de determinadas técnicas fisioterapéuticas sin un estudio previo de esta asignatura.

1.2 Relación con otras materias

Esta asignatura sirve de base para la comprensión y estudio de materias clínicas médicas y quirúrgicas así como para todas las específicas de Fisioterapia.

1.3 Prerrequisitos

No hay

2. Competencias

2.1 Generales

- G1, G2, G3, G5
- G1. Conocer y comprender la morfología, la fisiología, la patología y la conducta de las personas, tanto sanas como enfermas, en el medio natural y social.
- G2. Conocer y comprender las ciencias, los modelos, las técnicas y los instrumentos sobre los que se fundamenta, articula y desarrolla la Fisioterapia.
- G3. Conocer y comprender los métodos, procedimientos y actuaciones fisioterapéuticas, encaminados tanto a la terapéutica propiamente dicha a aplicar en la clínica para la reeducación o recuperación funcional, como a la realización de actividades dirigidas a la promoción y mantenimiento de la salud.
- G5. Valorar el estado funcional del paciente, considerando los aspectos físicos, psicológicos y sociales.

2.2 Específicas

- E1, E2, E11, E25.
- E1. Conocer los principios y teorías de los agentes físicos y sus aplicaciones en fisioterapia.
- E2. Comprender los principios de la biomecánica y la electrofisiología, y sus principales aplicaciones en el ámbito de la fisioterapia
- E11. Conocer la fisiopatología de las enfermedades identificando las manifestaciones que aparecen a lo largo del proceso, así como los tratamientos médico-quirúrgicos, fundamentalmente en sus aspectos fisioterapéuticos y ortopédicos.
- E25. Comprender y realizar los métodos y técnicas específicos referidos al aparato locomotor (incluyendo terapias manuales, terapias manipulativas articulares, osteopatía y quiropraxia), a los procesos neurológicos, al aparato respiratorio, al sistema cardiocirculatorio y a las alteraciones de la estática y la dinámica.

3. Objetivos

- 1. Comprender los principios de la electrofisiología, aplicando los procedimientos basados en las mismas.
- 2. Demostrar que comprende y que es capaz de implementar los métodos de análisis crítico, desarrollo de teorías y su aplicación de los conocimientos de biofísica al campo disciplinar de la Fisioterapia.
- 3. Conocer y comprender la estructura y función del cuerpo humano de órganos y sistemas; de los mecanismos de regulación y control de las diferentes funciones en situaciones especiales.
- 4. Conocer los cambios fisiológicos y estructurales que se pueden producir como consecuencia de la aplicación de Fisioterapia.
- 5. Conocer la fisiología especial destacando las condiciones biofísicas y fisiológicas que van a afectar a la función de los órganos y sistemas y especialmente a la función del aparato locomotor.
- 6. Capacitación para identificar las capacidades funcionales en el transcurso de una exploración clínica o de una valoración profesional.
- 7. Demostrar que comprende y que es capaz de implementar los métodos de análisis crítico, desarrollo de teorías y su aplicación de los conocimientos de biofísica al campo disciplinar de la Fisioterapia.
- 8. Demostrar que comprende las pruebas experimentales y de observación de las teorías científicas desarrolladas en el conocimiento del funcionamiento del cuerpo humano y sus aplicaciones en el campo disciplinar de la Fisioterapia
- 9. Obtener y dominar la mayor parte de la terminología en que ha de basar su expresión técnica en su vida profesional.
- 10. Relacionar continuamente la biofísica y estructura de cada sistema con la función que desempeña en el cuerpo humano sano y enfermo.
- 11. Saber seleccionar, sistematizar y jerarquizar los conocimientos biofísicos, fisiológicos y fisiopatológicos según su aplicación clínica y necesidad práctica.
- 12. Tener, en la actividad profesional, un punto de vista crítico, creativo y constructivo.
- 13. Mantener una actitud de aprendizaje y mejora constante en la conducta profesional,
- 14. Ajustarse a los límites de su competencia profesional, colaborar y trabajar responsablemente con otros profesionales
- 15. Desarrollar principios éticos para el correcto ejercicio de la profesión.

4. Contenidos

Bloque 1: BASES DE FISIOLOGÍA

Carga de trabajo en créditos ECTS:

3

a. Contextualización y justificación

Se establecen las bases de conocimiento de la Fisiología como herramienta necesaria para el estudio de la Fisiología Humana, de los Fundamentos de Fisioterapia y de diferentes materias clínicas que se desarrollan durante el Grado de Fisioterapia.

b. Objetivos de aprendizaje y contenidos

TEMA 1. LA HOMEOSTASIA Y LOS COMPARTIMENTOS LÍQUIDOS CORPORALES.

- 1.- Comprender los conceptos de homeostasia, medio interno y sistemas de control.
- 2.- Distinguir los diferentes compartimentos líquidos corporales
- 3.- Entender el principio de dilución y describir cómo se pueden medir los distintos compartimentos líquidos.
- 4.- Explicar el proceso de ósmosis.
- 5.- Describir cómo se produce el movimiento de agua entre compartimentos cuando la tonicidad es diferente entre ellos.

TEMA 2. MECANISMOS DE TRANSPORTE A TRAVÉS DE LA MEMBRANA.

- 1.- Identificar los componentes de la membrana celular y las funciones de los mismos.
- 2.- Enumerar los distintos mecanismos de transporte de agua y solutos.
- 3.- Describir las características de los procesos de difusión simple y facilitada.
- 4.- Enumerar las características básicas de los procesos de transporte activo.
- 5.- Diferenciar los fundamentos del transporte activo primario y secundario.
- 6.- Explicar los procesos de endocitosis, exocitosis, pinocitosis y transcitosis.
- 7.- Describir el transporte de sustratos a través de epitelios.

TEMA 3. LA COMUNICACIÓN ENTRE LAS CÉLULAS

- 1.- Distinguir los tipos básicos de comunicación intercelular.
- 2.- Describir las características funcionales de los primeros mensajeros.
- 3.- Explicar el concepto de receptor y describir sus características y tipos.
- 4.- Describir las características funcionales de los segundos mensajeros.
- 5.- Conocer los diferentes tipos de transducción de las señales extracelulares.

TEMA 4. LOS POTENCIALES ELÉCTRICOS A TRAVÉS DE LA MEMBRANA.

- 1.- Definir el potencial de equilibrio de un ión.
- 2.- Calcular el potencial de equilibrio de diferentes iones. Aplicación de la Ecuación de Nernst.
- 3.- Definir el potencial de reposo y calcularlo aplicando de la ecuación de Goldman.
- 4.- Describir la influencia de las alteraciones de la permeabilidad iónica en el potencial de reposo.
- 5.- Describir las características del potencial electrotónico
- 6.- Definir el potencial de acción y dibujar su perfil característico, especificando sus fases
- 7.- Explicar los movimientos iónicos que determinan el potencial de acción
- 6.- Definir el período refractario (PR) y distinguir el PR absoluto del PR relativo
- 7.- Describir el mecanismo de transmisión del potencial de acción
- 8.- Explicar los factores que afectan a la velocidad de conducción del potencial de acción.
- 9.- Clasificar las fibras por su velocidad de conducción
- 10.- Describir aplicaciones clínicas del registro de potenciales de acción.

TEMA 5. TRANSMISIÓN SINÁPTICA. POTENCIAL DE ACCIÓN MUSCULAR.

- 1.- Definir el concepto de sinapsis
- 2.- Describir el funcionamiento de una sinapsis eléctrica
- 3.- Describir los fenómenos que ocurren en el elemento presináptico de una sinapsis química a la llegada de un potencial de acción.

- 4.- Enumerar los cambios en las permeabilidades iónicas que dan lugar a un potencial postsináptico excitador o inhibidor.
- 5.- Enumerar las propiedades de la sinapsis química.
- 6.- Definir los conceptos de sumación temporal, espacial y convergencia y divergencia neuronal.
- 7.- Explicar los cambios bioquímicos y morfológicos que pueden dar lugar a la plasticidad neuronal
- 8.- Conocer el proceso de la transmisión neuromuscular en el músculo esquelético y sus diferencias con la sinapsis nerviosa
- 9.- Saber qué es un potencial de placa motora.
- 10.- Conocer los sistemas de bloqueo neuromuscular
- 11.- Diferenciar los potenciales de acción de los diferentes tipos de músculo esquelético, cardiaco y liso

TEMA 6. BASES FISIOLÓGICAS DEL SISTEMA NERVIOSO

- 1.- Saber las funciones fisiológicas básicas del sistema nervioso.
- 2.- Establecer una clasificación anatómica y otra funcional del sistema nervioso.
- 3.- Conocer las estructuras protectoras del sistema nervioso central.
- 4.- Describir las funciones del líquido cefalorraquídeo.
- 5.- Diferenciar las partes en que se divide el sistema nervioso periférico.
- 6.- Conocer las funciones básicas del sistema nervioso somático, del autónomo y del entérico.
- 7.- Enumerar las células de la glía y conocer sus funciones fundamentales.
- 8.- Describir la estructura de la neurona y establecer una clasificación de los diferentes tipos.
- 9.- Explicar las características morfofuncionales del axón.
- 10.- Explicar el transporte axónico.
- 11.- Clasificar las fibras nerviosas atendiendo a su envoltura, diámetro y velocidad de conducción.

TEMA 7. DINÁMICA DE GASES Y FLUIDOS APLICADOS A FISIOLOGÍA

- 1.- Distinguir los diferentes estados físicos de la materia
- 2.- Conocer las leyes físicas que regulan el comportamiento de los gases
- 3.- Entender el concepto de presión parcial
- 4.- Describir los factores que determinan la solubilidad de un gas en un líquido
- 5.- Entender el concepto de tensión superficial
- 6.- Explicar la ley de Laplace y su aplicación al comportamiento de los alveolos pulmonares
- 7.- Entender las relaciones entre flujo, presión y resistencia en la circulación sanguínea
- 8.- Distinguir los tipos de flujo laminar y turbulento
- 9.- Saber los factores que intervienen en el cálculo del nº de Reynolds
- 10.- Explicar los elementos que intervienen en la ley de Poiseuille
- 11.- Explicar el concepto de presión transmural
- 12.- Describir el concepto de complianza

TEMA 8. FISIOLOGÍA DE LOS RITMOS BIOLÓGICOS

- 1.- Establecer las diferencias entre homeostasis reactiva y predictiva.
- 2.- Conocer las diferentes magnitudes que caracterizan un ritmo biológico fase, periodo, frecuencia, amplitud, acrofase.
- 3.- Clasificar los ritmos biológicos en función de su periodo
- 4.- Describir los principales componentes de un sistema circadiano
- 5.- Localizar la glándula pineal y describir las principales funciones de la melatonina
- 6.- Explicar el ritmo circadiano sueño/vigilia
- 7.- Describir las implicaciones del trabajo a turnos sobre la desincronización del reloj biológico.

TEMA 9: TERMORREGULACIÓN.

- 1.- Explicar el concepto de homeotermia.
- 2.- Diferenciar entre carcasa y núcleo.
- 3.- Conocer la temperatura corporal y las variaciones fisiológicas de sus valores normales.
- 4.- Describir los mecanismos que aportan calor al organismo (termogénesis)
- 5.- Describir los mecanismos que restan calor al organismo (termolisis)
- 6.- Conocer el sistema de retroalimentación que regula la Ta corporal.
- 7.- Reconocer la importancia de los mecanismos de conducta en la regulación de la temperatura y los procesos de aclimatación.
- 8.- Conocer el concepto de fiebre, hipertermia e hipotermia y sus mecanismos de producción.

TEMA 10. BIOENERGÉTICA

- 1.- Enumerar las principales vías metabólicas que participan en la obtención de ATP
- 2.- Definir el metabolismo basal
- 3.- Explicar los conceptos de consumo de oxígeno (VO2) y consumo máximo de oxígeno (VO2max.)
- 4.- Explicar la noción de deuda de oxígeno global, lactácida y alactácida.
- 5.- Describir los principales factores que modifican la velocidad del metabolismo
- 6.- Explicar el concepto de umbral anaeróbico y la forma de calcularlo según Mader (4mmol/L)

c. Métodos docentes y principios metodológicos

30 sesiones de una hora de duración en la que se desarrollan 10 temas teóricos mediante clase magistral participativa. Se completan con 20 horas de resolución de problemas y casos prácticos en aula, de actividades que han debido desarrollarse con trabajo autónomo del alumno. 20 horas de estudio autónomo, 20 horas de realización de actividades, 5 horas de preparación de exámenes y de organización y preparación de material de estudio.

d. Plan de trabajo

Exposición de contenidos teóricos y discusión en clase de diferentes supuestos clínicos desde el punto de vista de la Fisiología básica.

e. Evaluación

El 80% de la calificación de los estudiantes se establecerá mediante pruebas escritas de preguntas cortas y resolución de problemas en las que se evaluarán los contenidos de los temas desarrollados mediante lección magistral.

El 20% de la calificación restante se obtendrá de la valoración de las actividades desarrolladas por parte del alumno.

Bloque 2: FÍSICA APLICADA

Carga de trabajo en créditos ECTS:

4.5

a. Contextualización y justificación

Conceptos físicos fundamentales desde el punto de vista sanitario, de forma que sirvan de base para entender y saber aplicar los distintos tratamientos aprendidos en el resto de las asignaturas con el fin de poder analizar las distintas respuestas que estos tratamientos van a tener en el cuerpo del paciente desde el punto de vista físico.

b. Objetivos de Aprendizaje

- 1. Dotar al alumno de los conocimientos físicos básicos necesarios para poder comprender el funcionamiento de los diversos instrumentos terapéuticos utilizados por el fisioterapeuta.
- Conocimientos de Física en la aplicación terapéutica de agentes físicos.

Proyecto docente de la asignatura

Universidad de Valladolid

- 3. Recordar algunos principios de la Física que pueden ser aplicados al análisis del movimiento del cuerpo humano.
- 4. Conocer los principios elementales en los que se basa el estudio de las radiaciones, sus consecuencias y modos de protección.
- 5. Proporcionar los conceptos físicos básicos previos al estudio de la fisiología cardíaca y respiratoria.
- Destreza en el reconocimiento y conversión de unidades y en el cálculo y estimación de magnitudes físicas que faciliten la realización de técnicas en Fisioterapia.

c. Contenidos

- Tema 1. Cinemática de la partícula
- Tema 2. Dinámica de la partícula
- Tema 3. Movimiento rotacional
- Tema 4. Palancas. Momento de una fuerza
- Tema 5. Trabajo, energía y potencia
- Tema 6. Fluidos ideales
- Tema 7. Fluidos reales
- Tema 8. Propiedades elásticas de los materiales
- Tema 9. Termodinámica. Calor y temperatura
- Tema 10. Oscilaciones y ondas
- Tema 11. Electrostática
- Tema 12. Magnetismo
- Tema 13. Ultrasonidos
- Tema 14. Ultravioleta
- Tema 15. Infrarrojos
- Tema 16. Microondas
- Tema 17. Láser

d. Métodos docentes

3 créditos ECTS Metodología de enseñanza: Presentación en el aula de los conceptos y las temáticas a tratar utilizando el método de la lección magistral. Para esta actividad formativa, la distribución por crédito en horas será: 35 horas presenciales (teóricas), 40,5 horas de estudio autónomo, 4 horas de preparación de exámenes y 1 hora de organización y preparación de material de estudio. Desde el 13 de marzo de 2020, se sustituyen las clases presenciales por materiales online disponibles para los alumnos a través del campus virtual de la asignatura. Principalmente, enlaces a páginas de interés para cada concepto teórico necesario y vídeos explicativos realizados por el profesor. Se ofrece a los alumnos realizar tutorías a través de videoconferencia para aclarar dudas o ahondar en los conceptos explicados.

1.5 créditos: Contenidos prácticos (prácticas de aula) y actividades académicamente dirigidas. Para esta actividad formativa la distribución por crédito en horas será: 10 horas de presencialidad, 15 horas de estudio autónomo, 2 horas de trabajo en grupo, 4 horas de preparación de exámenes y 1 hora de organización y preparación de material de estudio. Desde el 13 de marzo de 2020, se sustituyen las clases presenciales por materiales online disponibles para los alumnos a través del campus virtual de la asignatura. Principalmente, colecciones de problemas propuestos y vídeos explicativos, realizados por el profesor, describiendo

detalladamente la resolución de cada problema planteado. Se ofrece a los alumnos realizar tutorías a través de videoconferencia para aclarar dudas o ahondar en los conceptos explicados.

e. Plan de trabajo

Exposición de contenidos teóricos y realización de prácticas de aula como aplicación de la teoría aplicada. Desde el 13 de marzo de 2020, se sustituyen las clases presenciales por materiales online en la cantidad y calidad adecuada para sustituir las horas asignadas a la materia.

f. Evaluación

El 80% de la calificación de los estudiantes se establecerá mediante una prueba escrita de resolución de problemas, en la que se evaluarán los contenidos de los temas desarrollados mediante lección magistral y problemas resueltos. Debido a la actual situación de confinamiento, esta parte de la calificación podrá ser sustituida por diversas pruebas realizadas a través del campus virtual: cuestionarios tipo test, preguntas cortas conceptuales, problemas breves, trabajos y/o exposiciones individuales o grupales, corregidas por el profesor o mediante una metodología de corrección por pares (por otros alumnos). Se realizarán el máximo número de pruebas posibles que sea posible, dentro de las posibilidades de los alumnos por el resto de asignaturas, a fin de disponer del criterio más objetivo posible.

El 20% de la calificación restante se corresponderá con las actividades realizadas durante el curso tanto de manera individual como grupal. Estas actividades ya estaban pensadas para ser entregadas a través del campus virtual, por lo que no se modifica su planteamiento.

g. Bibliografía básica

P.A. Tipler y G. Mosca. Física para la ciencia y la tecnología (2 volúmenes).

h. Bibliografía complementaria

- A. Cromer. Física para las ciencias de la vida. Editorial Reverté, 1996.
- D. Jou et al., Física para Ciencias de la Vida. (2ª ED). Mc Graw Hill. 2009.

5. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teóricas y vídeos conceptuales	45	Estudio y trabajo autónomo individual	95,5
Clases prácticas y vídeos de problemas	30		
Otras actividades y trabajos online			17
Total presencial	75	Total no presencial	112.5

6. Temporalización (por bloques temáticos) y/o /temporalización de tareas y actividades

BLOQUE TEMÁTICO	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
BASES DE FISIOLOGÍA	3	1º CUATRIMESTRE, 30 HORAS TEÓRICO-PRÁCTICAS
FÍSICA APLICADA	4,5	2ª CUATRIMESTRE 35 TEÓRICAS 10 PRÁCTICAS DE AULA

7. Sistema de calificaciones – Tabla resumen

Se especifican de forma detallada en cada bloque de la asignatura

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES	
BASES DE FISIOLOGÍA	 		
Pruebas escritas contenidos teóricos y prácticos	80%	La nota de este bloque pondera el 40% de la nota final, siempre que sea superior a un valo	
Entregas individuales	20%	de 4 sobre 10	
FÍSICA APLICADA			
Pruebas escritas contenidos teóricos Sustituible por diversos test, cuestionarios, problemas, entregables y demás evaluaciones online realizadas.	80%	La nota de este bloque pondera el 60% de la nota final, siempre que sea superior a un valor de 4 sobre 10	
Entregas individuales y o grupales	20%		

CRITERIOS DE CALIFICACIÓN

Convocatoria ordinaria y extraordinaria: de acuerdo al Real Decreto 1125/2005 de 5 de septiembre 0-4,9 Suspenso (SS); 5,0-6,9 Aprobado (AP); 7,0-8,9 Notable (NT); 9,0-10 Sobresaliente (SB)

La nota global de la asignatura se realizará mediante media ponderada según la carga en créditos de cada uno de los bloques. En cada uno de los bloques habrá que obtener al menos la calificación de 4 sobre 10.

La asignatura se supera obteniendo en las pruebas escritas junto con el resto de actividades una puntuación mínima de 5 sobre 10. De lo contrario la asignatura quedará suspensa.

La calificación de la materia superada, teórica o práctica, se guarda para la convocatoria

extraordinaria del mismo año.

8. Consideraciones finales

Plan tutorial

Tutoría presencial, individualizada o en grupo en las horas que figuran en la página web de la asignatura dentro del Grado de Fisioterapia

Atención presencial individualizada o en grupo, complemento de la anterior, previa solicitud al profesor.

Atención personalizada o grupal a petición del os alumnos a través de videoconferencia, mensajería del campus virtual y correo electrónico.

