

Proyecto/Guía docente de la asignatura

Asignatura	SISTEMAS DE CONTROL Y COMUNICACIONES		
Materia			
Módulo			
Titulación	MÁSTER EN INGENIERA DE AUTOMOCIÓN		
Plan	518 Código 514		51443
Periodo de impartición	1 ^{er} Cuatrimestre	Tipo/Carácter	Obligatoria
Nivel/Ciclo	Máster	Curso	1
Créditos ECTS	4.5		
Lengua en que se imparte	Español		
Profesor/es responsable/s	José Luis González Sánchez Juan Carlos Fraile Marinero María Jesús de la Fuente Aparicio		
Datos de contacto (E-mail, teléfono)	jossan@eii.uva.es, jcfraile@eii.uva.es, mjfuente@eii.uva.es 983 42 33 55		
Departamento	Ingeniería de Sistemas y <mark>Automática</mark>		

1. Situación / Sentido de la Asignatura

1.1 Contextualización

Principios y técnicas de control de sistemas y procesos. Sistemas de control específicos para automoción. Sistemas empotrados y en tiempo real. Protocolos de comunicación. Sistemas de navegación y ayuda a la conducción.

1.2 Relación con otras materias

Como asignatura que aborda aspectos de control de diferentes sistemas en vehículos, se relaciona con otras asignaturas que tratan esos sistemas, como dinámica de vehículos y seguridad activa, motores térmicos, sistemas de propulsión alternativos, ..., así como la asignatura de sistemas eléctricos y electrónicos que, entre otros, tratan temas relacionados con tratamiento de señal, microprocesadores, ...

1.3 Prerrequisitos

Ninguno

2. Competencias

2.1 Generales

G1: poseer, comprender y aplicar conocimientos para concebir, diseñar, organizar actuaciones, poner en práctica y adoptar un proceso sustancial de creatividad e innovación para el desarrollo de nuevos conceptos e ideas

G4: capacidad de aprendizaje para el futuro de un modo que habrá de ser en gran medida autodirigido o autónomo.

G5: poseer y comprender conocimientos para la comprensión sistemática del estudio y el dominio de las habilidades y métodos de investigación en el ámbito de la industria de automoción.

2.2 Específicas

E3: poseer y comprender conocimientos sobre los vehículos automóviles, su arquitectura, su comportamiento, y los sistemas que los integran.

E6: poseer y comprender conocimientos y su aplicación en aspectos relacionados con los sistemas eléctricos, electrónicos, de control y de comunicaciones utilizados en los automóviles.

3. Objetivos

- Familiarización con el empleo de herramientas informáticas (MATLAB/SIMULINK) para modelado y análisis de sistemas de control empleados en automoción.
- Conocimiento de las arquitecturas de control y comunicaciones empleadas en automoción, haciendo especial énfasis en los sistemas de computación empotrados (ECU, planificación y control en tiempo real), los elementos de sensorización y actuación, y los sistemas de comunicación (buses, protocolos, ...) que deben dar soporte a las actividades de control con restricciones temporales estrictas y no estrictas.
- Conocimiento de técnicas que permitan abordar el modelado y análisis de diferentes sistemas de control relacionados con automoción (elemento motor, transmisión, dinámica del vehículo, seguridad, confort de pasajero, ...).
- Conocimiento a nivel de introducción de las tecnologías emergentes en automoción.
- Conocimiento de lo sistemas de diagnosis de fallos usados en la automoción

4. Contenidos y/o bloques temáticos

Bloque 1: Sistemas de control y comunicaciones

Carga de trabajo en créditos ECTS:

4.5

a. Contextualización y justificación

Principios y técnicas de control de sistemas y procesos. Sistemas de control específicos para automoción. Sistemas empotrados y en tiempo real. Protocolos de comunicación. Sistemas de navegación y ayuda a la conducción.

b. Objetivos de aprendizaje

- Familiarización con el empleo de herramientas informáticas (MATLAB/SIMULINK) para modelado y análisis de sistemas de control empleados en automoción.
- Conocimiento de las arquitecturas de control y comunicaciones empleadas en automoción, haciendo especial énfasis en los sistemas de computación empotrados (ECU, planificación y control en tiempo real), los elementos de sensorización y actuación, y los sistemas de comunicación (buses, protocolos, ...) que deben dar soporte a las actividades de control con restricciones temporales estrictas y no estrictas.
- Conocimiento de técnicas que permitan abordar el modelado y análisis de diferentes sistemas de control relacionados con automoción (elemento motor, transmisión, dinámica del vehículo, seguridad, confort de pasajero, ...).
- Conocimiento a nivel de introducción de las tecnologías emergentes en automoción.
- Conocimiento de lo sistemas de diagnosis de fallos usados en la automoción

c. Contenidos

- Sistemas de control en el automóvil
- Planificación y control de tareas y recursos
- Sistemas distribuidos en el automóvil
- Comunicaciones V2X
- Introducción a los sistemas de diagnosis de fallos: conceptos, definiciones, fundamentos, etc.
- Métodos de detección y diagnóstico de fallos basados en modelos y basados en datos. Aplicación al automóvil.

d. Métodos docentes

Actividades presenciales:

Clases de aula de teoría y problemas: Método expositivo

Tutorías docentes: Aprendizaje orientado a proyectos

Examen final: Controles individuales de evaluación y examen final

Prácticas en laboratorio: Aprendizaje mediante experiencias.

Actividades no presenciales:

Realización de la memoria de prácticas: Estudio/trabajo

Preparación y realización de trabajo temático: Estudio/trabajo

Estudio y preparación de exámenes: Estudio.

Universidad de Valladolid

e. Plan de trabajo

TEMA	TÍTULO DEL TEMA	HORAS (T)	HORAS (A)
1	Sistemas de control en el automóvil 1.1 Sistemas de control del elemento motor		
	1.2 Sistemas de control de amortiguación y tracción	15	2
	1.3 Sistemas de control de seguridad (ABS / Airbag ,)		
2.	Comunicaciones en el automóvil 2.1 Planificación y control de tareas y recursos 2.2 Sistemas distribuidos en el automóvil 2.3 Comunicaciones V2X.	9	3
3	Sistemas de diagnóstico 3.1- Introducción a los sistemas de diagnosis de fallos: conceptos, definiciones,		2
	fundamentos, etc. 3.2 Métodos de detección y diagnóstico de fallos basados en modelos y basados en datos. Aplicación al automóvil.	5	2

TEMA	TÍTULO DEL TEMA	HORAS (S)	HORAS (L)
1	Prácticas de laboratorio	0	9
	- Simulación de sistemas de control y comunicaciones en el entorno Matlab/Simulink/TrueTime.		7) 6

f. Evaluación

ACTIVIDAD	PESO EN LA NOTA FINAL	OBSERVACIONES		
Trabajo escrito y presentación oral	40%	Trabajos e informes realizados, correspondientes a las prácticas planteadas		
Exámenes	60%	En las fechas establecidas por el Plan de Ordenación Académica del Máster		

g. Bibliografía básica

- Ogata K. Ingeniería de Control Moderna, 4ª Edición, Prentice Hall 2003
- Ulsoy G., Peng H., C, Çakmakcı. Automotive Control Systems, Cambridge University Press, 2012
- Kiencke, U., Nielsen, L. Automotive Control Systems for Engine, Driveline and Vehicle. Springer. 2005
- Rajamani, R. Vehicle Dynamics and Control. Springer. 2006
- Buttazzo, G.C. Hard Real-Time Computing Systems. Kluwer Academic Publishers. 1997
- Liu, J.W.S. Real-Time Systems. Prentice Hall. 2000.

h. Bibliografía complementaria

- Bennet S. Real-Time Computer Control. An Introduction, 2^a Edición, Prentice Hall, 1994
- Burns A., Wellings A. Sistemas de Tiempo Real y Lenguajes de Programación, 3ª Edición, Addison Wesley, 2003

i. Recursos necesarios

Escritorio virtual Uva. MATLAB/Simulink/TrueTime.

Aula con proyector multimedia y pizarra para sesiones de teoría y de laboratorio.

Acceso al material bibliográfico recomendado.

j. Temporalización

CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
4.5	15 semanas

5. Métodos docentes y principios metodológicos

Actividades presenciales:

- Clases de aula de teoría: Método expositivo
- Clases de aula de problemas: Resolución de problemas
- Tutorías docentes: Aprendizaje orientado a proyectos
- Examen final: Controles individuales de evaluación y examen final
- Prácticas en laboratorio: Aprendizaje mediante experiencias.

Actividades no presenciales:

- Realización de prácticas: Estudio/trabajo
- Estudio y preparación de exámenes: Estudio.

6. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teórico-prácticas (T/A)	36	Trabajo individual	50
Laboratorios (L)	9	Trabajo en grupo	17.5
Total presencial	45	Total no presencial	67.5

7. Sistema y características de la evaluación

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Prácticas de laboratorio	40%	Modelado, análisis y simulación de un sistema de control de automóvil en el entorno Matlab/Simulink/TrueTime. Se realizarán los informes correspondientes y una presentación oral
Examen final escrito	60%	En las fechas establecidas por el Plan de Ordenación Académica del Máster

CRITERIOS DE CALIFICACIÓN

Convocatoria ordinaria:

- Cada instrumento de evaluación se valorará sobre 10. La nota final se calculará como la media ponderada de todos ellos teniendo en cuenta los pesos recogidos en la tabla anterior.
- o El alumno debe conseguir al menos un 5 en la nota final para superar la asignatura
- o No se exige nota mínima en ninguna de las partes

• Convocatoria extraordinaria:

o Los mismos criterios que en la convocatoria ordinaria

8. Consideraciones finales