

Proyecto/Guía docente de la asignatura Adaptada a la Nueva Normalidad

Se debe indicar de forma fiel como va a ser desarrollada la docencia en la Nueva Normalidad. Esta guía debe ser elaborada teniendo en cuenta todos los profesores de la asignatura. Conocidos los espacios y profesorado disponible, se debe buscar la máxima presencialidad posible del estudiante siempre respetando las capacidades de los espacios asignados por el centro y justificando todas las adaptaciones que se realicen respecto a la memoria de verificación Si la docencia de alguna asignatura fuese en parte online, deben respetarse los horarios tanto de clase como de tutorías).

Asignatura	QUÍMICA		
Materia	Química		
Módulo			
Titulación	Grado en Biomedicina y Terapias Avanzadas		
Plan	710 Código		47894
Periodo de impartición	2º cuatrimestre	Tipo/Carácter	Formación básica
Nivel/Ciclo	Grado	Curso	1 ^{ero}
Créditos ECTS	6		
Lengua en que se imparte	Español		
Profesor/es responsable/s	Francisco Javier Guerra Navarro		
Datos de contacto (E-mail, teléfono)	Franciscojavier.guerra@uva.es		
Departamento	Química Orgánica		

1. Situación / Sentido de la Asignatura

1.1 Contextualización

Se trata de una asignatura obligatoria, de carácter básico de 6 créditos, que se imparte en el segundo cuatrimestre del primer curso del grado en Biomedicina y Terapias Avanzadas. Esta asignatura pretende establecer las bases que permitan comprender los aspectos fundamentales de la estructura y propiedades de la materia y de los cambios que ésta experimenta a través de reacciones químicas o cambios de estado. Asimismo, dotará a los estudiantes de los conocimientos fundamentales para entender el comportamiento de los compuestos orgánicos de interés biológico.

A través de la Química, la Biomedicina permite comprender las interacciones fármacoreceptor, y hacer uso de farmacoterapia y de otras terapias más avanzadas como incluyendo la terapia génica, la terapia inmunológica, la terapia celular y las terapias personalizadas dirigidas contra el cáncer

1.2 Relación con otras materias

Está asignatura proporciona los conocimientos básicos para que el alumno comprenda y supere con éxito, todas aquellas asignaturas relacionadas con la Química como son: Biología Celular, Bioquímica y Biología Molecular y Biomateriales.

1.3 Prerrequisitos

Conocimientos adquiridos en el Bachillerato sobre:

- Composición de la materia.
- Antecedentes del modelo atómico de Bohr (Radiación electromagnética, espectros atómicos y cuantización
- Modelo atómico de Bohr para el átomo de hidrógeno.
- Propiedades ondulatorias de la materia.
- Modelo mecánico-cuántico ondulatorio (o de orbitales)
- Sistema periódico de los elementos. Propiedades periódicas.
- Símbolos de los elementos químicos y ubicación en el Sistema periódico.
- Estequiometría de las reacciones químicas
- Gases ideales.
- Formulación y nomenclatura de las sustancias inorgánicas y orgánicas

2. Competencias

2.1 Generales

Competencias Generales:

- **CG1** Saber analizar y sintetizar problemas básicos relacionados con la Biomedicina y las Terapias Avanzadas, resolverlos utilizando el método científico y comunicarlos de forma eficiente.
- **CG2** Conocer las bases científicas y técnicas de la Biomedicina y las Terapias Avanzadas, de modo que se facilite el aprendizaje de nuevos métodos y tecnologías, así como el desarrollo de una gran versatilidad para adaptarse a nuevas situaciones.
- **CG3** Adquirir la capacidad de resolver problemas con iniciativa y creatividad, así como de comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética, social y profesional de la actividad del biomédico.
- **CG4** Trabajar de forma adecuada en un laboratorio, incluyendo los aspectos de seguridad, manipulación de materiales y eliminación de residuos.

Competencias Básicas:

- **CB1.** Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- **CB2.** Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- **CB4**. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

Competencias Transversales:

- CT2. Tener capacidad de organizar y planificar su trabajo tomando las decisiones correctas basadas en la información disponible, para emitir juicios dentro de su área de estudio.
- CT3. Comunicar los conocimientos oralmente y por escrito, ante un público tanto especializado como no especializado.
- CT5. Desarrollar habilidades de autoaprendizaje y motivación para continuar su formación a nivel de postgrado.

2.2 Específicas

- **CE1**. Conocer los principales conceptos matemáticos, físicos, químicos, así como bioquímicos, que permiten comprender el funcionamiento del cuerpo humano y sus alteraciones. Aplicar esos conceptos en experimentación e investigación biomédica y terapias avanzadas.
- **CE13**. Adquirir conocimientos sobre los principios en que se basan la farmacología y toxicología. Tener una visión global de los distintos medicamentos y sus mecanismos de acción.
- **CE30**. Conocer y comprender los fundamentos matemáticos, físicos, químicos y biológicos de la ciencia de los biomateriales y su aplicación en terapia tisular.

CE34. Conocer el origen, naturaleza, diseño, obtención, análisis y control de medicamentos y productos sanitarios.

3. Objetivos

Este proyecto de Grado en Biomedicina y Terapias Avanzadas pretende los siguientes objetivos:

- 1. Inculcar en los estudiantes el interés por el aprendizaje de la Química, que les permita valorar sus aplicaciones en diferentes contextos de su futuro profesional.
- 2. Relacionar la estructura atómica y molecular con las propiedades físicas y químicas de la materia.
- 3. Que los estudiantes adquieran la habilidad para aplicar sus conocimientos químicos, teóricos y prácticos, a la solución de problemas en Química.
- 4. Relacionar tipos de reacciones químicas con sus aplicaciones técnicas.
- 5. Adquirir autonomía en la búsqueda de datos
- 6. Aplicar los conceptos básicos y leyes fundamentales de la Química
- 7. Buscar, discriminar y sintetizar información relevante.
- 8. Medir parámetros experimentales y hacer uso de los mismos en cálculos conducentes a resultados técnicos.

4. Contenidos y/o bloques temáticos

Bloque 1: QUÍMICA

Carga de trabajo en créditos ECTS: 6,0

a. Contextualización y justificación

En los cuatro primeros temas se sientan las bases de la Química como Ciencia estructural, es decir, se establece la relación existente entre la estructura y las propiedades de los compuestos químicos.

A continuación, se aborda el estudio de las leyes que rigen las transformaciones químicas, se analizan los principales tipos de reacciones químicas y sus aplicaciones. Para finalizar se dedica una parte del programa al estudio de la Química Orgánica que permitirá al alumno comprender la relación estructura-propiedad, concepto que le será de utilidad para otras materias como Bioquímica, Biomateriales o Nanomedicina durante el grado en Biomedicina y Terapias Avanzadas.

b. Objetivos de aprendizaje

El estudiante será capaz de:

- Entender la importancia que el estudio de la Química puede tener como herramienta útil en su futuro profesional.
- Clasificar los compuestos químicos según su tipo de enlace.
- Conocer las propiedades y aplicaciones de los compuestos químicos según su tipo de enlace.
- Conocer la influencia de las fuerzas intermoleculares en las propiedades físicas de la materia.
- Comprender los estados de agregación de la materia
- Conocer los distintos tipos de disoluciones y calcular sus concentraciones.
- Conocer las propiedades coligativas y sus aplicaciones.
- Entender los conceptos termodinámicos y cinéticos relacionados con las transformaciones químicas.
- Comprender el concepto de equilibrio químico y distinguir los diferentes tipos de reacciones químicas.
- Entender las disoluciones reguladoras y calcular su pH.
- Conocer la ecuación de Nernst y calcular el potencial estándar de una pila.
- Conocer la estructura y clasificación de las moléculas orgánicas.
- Entender la estereoquímica de los compuestos orgánicos.
- Conocer los grupos funcionales en química orgánica y comprender su reactividad.

c. Contenidos

Los contenidos de este bloque se especifican en la siguiente tabla:

Temas		Horas
	QUÍMICA	T+P
1	El Enlace Químico 1. Introducción al enlace químico. 2. Enlace lónico. 3. Enlace covalente. a. Teoría de los Orbitales Moleculares b. Hibridación 4. Enlace metálico.	2+0,5
2	Fuerzas intermoleculares. 1. Introducción. 2. Fuerzas intermoleculares.	2+1
3	Estados de agregación de la materia. 1. Introducción. 2. Características y leyes de los gases. 3. El estado líquido. 4. Sólidos: tipos y propiedades. 5. Diagrama de fases.	1+1
4	Propiedades de las disoluciones. 1. Tipos de disoluciones. 2. Proceso de disolución. 3. Modos de expresar la concentración de las disoluciones. 4. Factores que afectan a la solubilidad. Ley de Henry.	2,5+1

	5. Propiedades coligativas en disoluciones binarias. Ley de Raoult	
5	 Termodinámica Química. Energía que acompaña a los procesos químicos y a los cambios físicos. Primer Principio de la Termodinámica. Energía interna. Calorimetría. Ley de Hess. Segundo Principio de la Termodinámica: Entropía. Tercer principio de la Termodinámica. Energía libre de Gibbs 	3+1
6	 Equilibrio Químico. Equilibrio químico. Formas de expresar la constante de equilibrio. a. Equilibrios homogéneos. b. Equilibrios heterogéneos. c. Cociente de reacción. Predicción del sentido de una reacción. Factores que alteran el equilibrio químico. Principio de Le Chatelier. 	2+2
7	 Introducción. La ionización del agua y la escala de pH. Ácidos y bases de Brønsted y Lowry. Fortaleza relativa de los ácidos y de las bases. Ácidos polipróticos. pH de las disoluciones de compuestos iónicos. Disoluciones amortiguadoras. Ácidos y bases de Lewis. 	2+2
8	 Equilibrio en los procesos de solubilidad-precipitación. 4. Equilibrios en los procesos de solubilidad-precipitación. 5. La constante del producto de solubilidad. 6. Factores que afectan a la solubilidad de una sal iónica insoluble. a. Efecto de ion común. b. Solubilidad y pH. c. Formación de iones complejos. 	1+2

9	Procesos de oxidación-reducción. Electroquímica. 1. Introducción. 2. Pilas voltaicas o galvánicas. 3. Potencial o fuerza electromotriz de una pila. 3.1. Potenciales estándar de electrodo. 3.2. Efecto de las concentraciones sobre los potenciales de electrodo. Ecuación de Nernst. 3.3. Constante de equilibrio en reacciones redox. 4. Electrolisis. 5. Aspectos cuantitativos de la electrolisis.	2+2
10	Cinética Química. 1. Velocidad de reacción. 2. Ecuación de velocidad y orden de reacción. 2. Dependencia de la velocidad de reacción con la temperatura. Ecuación de Arrhenius. 3. Mecanismos de reacción. 4. Catálisis.	2+1
11	 Introducción al estudio de la Química Orgánica. Grupos funcionales y clasificación de los compuestos orgánicos. Estructura y clasificación de los hidrocarburos Grupos funcionales con heteroátomos Fórmula empírica y fórmula molecular de las sustancias orgánicas. Fórmulas estructurales. Efectos electrónicos de las moléculas orgánicas Efecto inductivo Efecto mesómero. Resonancia. Rotura de enlaces y tipos de reacciones orgánicas. Rotura de enlaces en los procesos orgánicos Reacciones de adición Reacciones de sustitución Reacciones de condensación 	3+1
12	Isomería de los compuestos orgánicos 1. Isomería Estructural 1.1. Isomería de esqueleto 1.2. Isomería de posición	2+1

		ı	
	1.3. Isomería de función		
	2. Estereoisomería: Isomería cis/trans y Z/E		
	3. Isomería óptica		
	3.1. Concepto de Quiralidad		
	3.2. Actividad óptica		
	3.3. Moléculas orgánicas con un centro estereogénico.		
	Nomenclatura R/S		
	3.4. Representaciones de Fischer		
	3.5. Moléculas orgánicas con más de un centro estereogénico		
	3.6. Importancia tecnológica de la estereoisomería		
	Hidrocorburgo		
	Hidrocarburos 1. Alcanos		
13	2. Alquenos	2+0,5	
13	3. Alquinos	2+0,5	
	4. Hidrocarburos aromáticos		
	Grupos funcionales con enlace sencillo		
14	Compuestos halogenados	2+0,5	
14	Alcoholes y éteres	2+0,5	
	Alcoholes y eteres Aminas		
	G. Allimide		
	Grupos funcionales con enlace múltiple	3	
	Función oxigenada con enlace múltiple	5 12	
	1.1.Función carbonílica	211	
	1.2.Función carboxílica	57 91	
15	Función nitrogenada con enlace múltiple	2+1	
	2.1.Nitrilo	SY W	
	2.2.Nitro	1 1	
	3. Enlace múltiple S-O	9	
	3.1.Sulfóxido, sulfona	1-30	
	3.2.Derivados de ácido sulfónico	DE PER	
		100	

d. Métodos docentes

Se utilizarán los siguientes métodos docentes:

- Método expositivo/Lección magistral.
- Resolución de ejercicios y problemas como complemento de la lección magistral.
- Aprendizaje basado en problemas:
- Aprendizaje mediante experiencias de laboratorio.

e. Plan de trabajo

El plan de trabajo se desarrolla de la siguiente manera:

Actividades formativas. Las actividades planteadas y su contenido en horas son los siguientes:

Actividades presenciales: 60 h

Clases de aula, teóricas y de problemas. En ellas se presentan los contenidos de la materia objeto de estudio y se resuelven o proponen a los alumnos la resolución de ejercicios y problemas. Pueden emplearse diferentes recursos que fomenten la motivación y participación del alumnado en el desarrollo de dichas clases.

Contenido en horas: 30,5 h de teoría y 17,5 h de ejercicios y problemas.

Prácticas de laboratorio. Esta actividad se desarrolla en espacios específicamente equipados. Su principal objetivo es la aplicación de los conocimientos adquiridos en otras actividades, como las clases teóricas de aula, a situaciones reales para la adquisición de habilidades básicas y de procedimiento relacionadas con la materia objeto de estudio.

Esta actividad va acompañada de la elaboración de un informe de la práctica que recoja toda la información relevante.

Contenido en horas: 12 h

f. Evaluación

Se realiza una evaluación continua, a lo largo de todo el curso, considerando los apartados siguientes:

- 1.- Pruebas objetivas parciales. Pruebas cortas con cuestiones teóricas y/o numéricas o bien preguntas tipo test de opción múltiple. Su contribución a la calificación final será de hasta el 20%.
- 2.- Evaluación basada en prácticas experimentales y/o informes de prácticas. Prueba corta con cuestiones teóricas relativas a las experiencias realizadas en el laboratorio. Su contribución a la calificación final será hasta el 20%.

g Material docente

Esta sección será utilizada por la Biblioteca para etiquetar la bibliografía recomendada de la asignatura (curso) en la plataforma Leganto, integrada en el catálogo Almena y a la que tendrán acceso todos los profesores y estudiantes. Es fundamental que las referencias suministradas este curso estén actualizadas y sean completas. Los profesores tendrán acceso, en breve, a la plataforma Leganto para actualizar su bibliografía recomienda ("Listas de Lecturas") de forma que en futuras guías solamente tendrán que poner el enlace permanente a Leganto, el cual también se puede poner en el Campus Virtual.

g.1 Bibliografía básica

- QUÍMICA: La Ciencia Central

T. L. Brown, H. E. LeMay, B. E. Bursten, C. J. Murphy; Ed.: Pearson. Prentice-Hall, (11a ed.); ISBN: 978-607-442-021-0

- QUÍMICA

R. Chang, K. A. Goldsby; Ed.: McGraw-Hill (12a ed.); ISBN: 9786071513939

- QUÍMICA

• K. Whitten, R. E. Davis, L. Peck, G. G. Stanley; Ed.: Cengage Learning (10^a ed.); ISBN: 978-607-519-958-0.

- QUÍMICA GENERAL (10ª edición).

• R. H. Petrucci, F. G. Herring; J. D. Madura y C. Bissonnette Ed.: Pearson Educación (10ª ed.); Prentice Hall.

- QUÍMICA ORGÁNICA (5ª edición)

Autor: Vollhardt, K. Peter C., Ed. Omega, ISBN: 978-84-282-1431-5

- QUÍMICA ORGÁNICA (9ª edición)

Carey, Francis A., Ed. McGraw-Hill Interamericana, ISBN: 9781456225872;
 9781456239077.

ORGANIC CHEMISTRY (2nd edition)

 Clayden, Jonathan; Greeves, Nick coaut; Warren, Stuart, Ed. Oxford University Press, ISBN: 978-0-19-927029-3.

g.2 Bibliografía complementaria

- Nomenclatura de las sustancias químicas

W. R. Peterson. Ed.: Reverté 2016 (4ª ed.); ISBN: 9788429176087

- Problemas Resueltos de Química. La ciencia básica.

M. D. Reboiras; Ed.: Thomson; ISBN: 978-84-9732-541-7

g.3 Otros recursos telemáticos (píldoras de conocimiento, blogs, videos, revistas digitales, cursos masivos (MOOC), ...)

h. Recursos necesarios

Los recursos de infraestructura y de multimedia de los que dispone el Centro

i. Temporalización

TEMAS	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO
Temas 1-4	1,1	Semanas 1 a 3
Temas 5-6	0,8	Semanas 4 a 5
Temas 7-10	1,4	Semanas 6 a 10
Tema 11-15	1,5	Semanas 11 a 15

5. Métodos docentes y principios metodológicos

La metodología docente utilizada en el desarrollo de la materia y su relación con las competencias a desarrollar, se puede concretar en lo siguiente:

1. Método expositivo / lección magistral. Esta metodología se centra fundamentalmente en la exposición verbal por parte del profesor de los contenidos sobre la materia objeto de estudio. Se llevará a cabo en el aula con el grupo completo de alumnos.

Competencias a desarrollar: CB1, CB2, CG1, CG2, CE1 y CE2.

2. Resolución de ejercicios y problemas. Este método se utiliza en el aula como complemento de la lección magistral para facilitar la compresión de los conceptos y ejercitar diferentes estrategias de resolución de problemas y análisis de resultados. Se llevará a cabo en el aula con grupos reducidos de alumnos.

Competencias a desarrollar: CB2, CB3, CG1, CG3, CE5 y CT2.

3. Aprendizaje cooperativo. Método de enseñanza-aprendizaje para el trabajo en grupo. Se llevará a cabo con grupos reducidos de alumnos con el fin de realizar actividades propuestas por el profesor.

Competencias a desarrollar: CB3, CG1, CG3, CT2 y CT5,

3. Aprendizaje mediante experiencias. Las experiencias se desarrollarán en el laboratorio en grupos reducidos acorde a la capacidad del laboratorio.

Competencias a desarrollar: CB2, CB3, CG1, CG3, CG4, CT2 y CT5.

6. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES o PRESENCIALES A DISTANCIA ⁽¹⁾	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teórico-prácticas (T/M)	30,5	Estudio y trabajo autónomo individual	80
Clases prácticas de aula (A)	17,5	Estudio y trabajo autónomo grupal	10
Laboratorios (L)	12		
Prácticas externas, clínicas o de campo			
Seminarios (S)			
Tutorías grupales (TG)			
Evaluación			
Total presencial	60	Total no presencial	90
		TOTAL presencial + no presencial	

⁽¹⁾ Actividad presencial a distancia es cuando un grupo sigue una videoconferencia de forma síncrona a la clase impartida por el profesor para otro grupo presente en el aula.

7. Sistema y características de la evaluación

Criterio: cuando al menos el 50% de los días lectivos del cuatrimestre transcurran en normalidad, se asumirán como criterios de evaluación los indicados en la guía docente. Se recomienda la evaluación continua ya que implica minimizar los cambios en la adenda.

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Prueba(s) objetiva(s) parciale(s)	20%	Dos pruebas a lo largo del cuatrimestre. Aproximadamente semanas 5 (o 6) y 10 (u 11).
Prácticas de Laboratorio	20%	Informes y prueba escrita de las prácticas de laboratorio. Junto con el examen ordinario.
Examen final Ordinario	60%	Examen escrito con preguntas teóricas y problemas

CRITERIOS DE CALIFICACIÓN

• Convocatoria ordinaria:

- o 60% examen final ordinario
- 20% pruebas objetivas
- o 20% prácticas de laboratorio

• Convocatoria extraordinaria:

o 100% examen final extraordinario

8. Consideraciones finales

