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Editorial announcements

1 Birthdays 2010

The year 2010 marks two notable birthdays for the Stata community. StataCorp itself
was founded 25 years ago as Computing Resource Center. The Stata Journal starts its
10th volume with this issue. So, happy birthday to them and happy birthday to us!

As computing-oriented people, we should perhaps have made more fuss at Stata’s
16th birthday in 2001. Somehow that was overlooked, and it is a while to wait until
Stata is 32, so at the Stata Journal, we are choosing to do something a little special at
each major birthday, modulo 5. The 20th anniversary of Stata was marked by a special
issue with a historical theme, accessible to subscribers and nonsubscribers alike at

http://www.stata-journal.com/sj5-1.html

For the 25th anniversary, we have decided to commemorate the Stata community by
running interviews with various people who have played major parts in making Stata
what it is over the last quarter-century, just as our 20th anniversary issue featured an
interview with William Gould, president of StataCorp. The first interview in 2010 is
with Christopher F. Baum and is included in this issue.

The year 2010 is, however, a 16th birthday too. The 16th London Users Group
meeting will be held in September. We are sad to announce the December 2009 death
of Ana Timberlake, who did so much for London Users Group meetings between 1995
and 2009, and also Users Group meetings in Spain, Ireland, and Poland. An appreciation
of a much loved member of the community follows these announcements.

2 Indexing widened

External recognition of quality is always welcome to both producers and consumers of
any academic journal. We are delighted to announce that starting with this issue, the
Stata Journal will be indexed in two further citation indexes of Thomson Scientific: the
Social Sciences Citation Index and Current Contents/Social and Behavioral Sciences.
These join the Citation Index Expanded and the CompuMath Citation Index, which
began indexing the Journal in 2005.

c© 2010 StataCorp LP gn0047



2 Editorial announcements

3 Associate Editors

Much of the burden of providing and organizing reviews of submitted articles inevitably
falls on our distinguished team of associate editors. With this issue, we thank most
warmly Thomas Lumley, University of Washington, who has served as an associate
editor since 2001, for all his contributions; and we welcome most warmly in the same
role Peter A. Lachenbruch, Oregon State University.

H. Joseph Newton and Nicholas J. Cox
Editors, Stata Journal
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A conversation with Kit Baum

Nicholas J. Cox
Department of Geography

Durham University
Durham, UK

n.j.cox@durham.ac.uk

Abstract. As explained in the Editorial announcements at the start of this issue,
the Stata Journal will be featuring various interviews with selected members of
the Stata community in 2010, Stata’s 25th anniversary year. In this issue, we
start with an online interview, dated October 14, 2009, of Christopher F. “Kit”
Baum, an economics professor at Boston College. Kit has been highly active as a
Stata user since the 1990s, contributing as an author and associate editor to this
journal and its predecessor, the Stata Technical Bulletin; as a much-downloaded
Stata program author; as an author of two notable Stata-based texts; as a frequent
participant on Statalist and at Users Group meetings in both the United States
and several European countries; and as founder and maintainer for more than a
decade of the SSC archive, which now contains many hundred user-written Stata
packages. In this interview, he comments on how he got into Stata and adds his
own speculations for the future.

Cox: Tell us a bit about your background. How did you get into economics as a
student?

Baum: I became interested in economics as a freshman in college, around the time I
figured out that I was not cut out to be a physics major. I ended up with an elective
course in economics in the third quarter of that academic year, taught by Professor Phil
Thomas, who became my senior thesis advisor. Despite an unimpressive start, I never
looked back.

Cox: Do you see yourself as an economist or an econometrician?

Baum: I am an economist who spends a lot of time doing applied econometrics and
programming, both statistical/econometric and database applications. I used to teach
monetary theory and policy, macroeconomics, and financial derivatives regularly, but in
the last several years, I have been teaching nothing but various flavors of econometrics
to undergraduates and PhD students. Despite the fact that my most highly cited article
(by a mile) is Baum, Schaffer, Stillman, Stata Journal (SJ) 20031, most of my recently
published research has been oriented toward the effects of uncertainty on firms’ behavior,
banks’ behavior, and international trade flows.

1. Baum, C. F., M. E. Schaffer, and S. Stillman. 2003. Instrumental variables and GMM: Estimation
and testing. Stata Journal 3: 1–31.

c© 2010 StataCorp LP gn0048



4 Baum interview

Cox: How did you get started in computing? What hardware and software were you
using?

Baum: Early in my college career, I took a computer science course—the only course
offered in the late 1960s!—and became intimately acquainted (as did Bill Gould) with
an IBM 1620 Model II. I learned Fortran II (the only thing beyond assembler and ma-
chine language which that machine supported), worked in the computer center as my
work-study job, and did quite a bit of programming. My senior thesis in economics in-
volved developing some interactive programs for teaching economic models. As “dumb
terminals” were only then becoming available, this was quite impractical, as one had to
run the modeling programs on the 1620s console typewriter, but I did get top marks
for effort.

When I became a PhD student at Michigan–Ann Arbor, I earned my keep by pro-
gramming for two years as Professor Bob Stern’s assistant, working on various data-
management and modeling exercises related to international trade and tariffs. I put
those programming skills to good use in my doctoral dissertation, written with Professor
Phil Howrey, applying Gregory Chow’s techniques for optimal control of discrete-time
models to macroeconomic modeling in the presence of parameter uncertainty (a com-
putationally burdensome problem on mainframes of the mid-1970s). That work was all
done in Fortran as well. Some estimation was done in mainframe TSP.

Cox: How did you get into Stata? What other econometrics or statistics software were
you using at the time?

Baum: Several years after I joined the Boston College economics faculty, one of my
colleagues was working on a research project with a coauthor at Harvard or MIT which
made heavy use of panel data. He came to me and insisted that we purchase and
support this package called Stata, which I had not heard of before. At the time, I was
teaching the first-year PhD econometrics course using Ken White’s Shazam package,
requiring the students to do a number of exercises and an empirical research paper.
Shazam had a number of good features, but also was quite clumsy in some ways, so
I migrated to the RATS package. It wasn’t much more popular with the students but
provided tools like vector autoregressions (VARs) and impulse response functions (IRFs)
that no other package had at the time. That first version of Stata, which the department
purchased for a Unix server, was version 5. I switched to using Stata in the first-year
PhD econometrics course. The next time I taught the undergraduate econometrics
course, I used Stata. Since that time, I have used Stata exclusively in teaching, and it
is used by my colleagues in all sections of undergraduate econometrics. I still turn to
RATS occasionally for specialty capabilities such as multivariate GARCH, but it may be
that Stata’s new commands in version 11 can do what I need in that area as well.

Cox: A very big contribution you have made to the Stata community is setting up and
maintaining the SSC archive over several years. Tell us how that came about.

Baum: My involvement here came as a side effect of becoming involved with RePEc,
Research Papers in Economics, a volunteer organization that has become the largest col-
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lection of economics-related bibliographic information. RePEc was started by Thomas
Krichel to enable the sharing of working papers (preprints), which are the predominant
mode of rapid communication of research results in economics. Boston College Eco-
nomics was one of the earliest participants in this effort, which was an outgrowth of
earlier efforts in the United Kingdom. It became clear that we could not only docu-
ment (and provide downloads for) working papers, but we could also document journal
articles, monographs—and in a blinding flash, it came to me: why not software?

This was a controversial notion, and one that was somewhat of a hard sell to the
rest of the RePEc team: why would we create software archives and commingle them
in a sense with working paper and journal article archives? If it were not for Stata, this
concept would probably not have emerged. Many other kinds of software have their
own repositories (CPAN for Perl, for instance). Some software vendors host archives
(e.g., MATLAB routines at the MathWorks or RATS routines at Estima). Stata software,
in the form of ado-files and help files, comprised complete routines: if well-written, far
more useful than most software circulating for other statistical packages and languages,
in that Stata user-written commands are “first-class citizens” once installed on the ado-
path.

At the time (1998), Stata routines were “published” as electronic supplements to the
Stata Technical Bulletin (STB) and disseminated on 3.5-inch floppy disks mailed with
the hardcopy STB. The latest user-written routines were included as in-line messages to
Statalist, but the code was often mangled by line wraps and the like. It seemed that
having an archive from which these files could be downloaded would make sense, and
the RePEc architecture supported that as soon as the other team members grudgingly
accepted my proposals to create a “software template” that could provide bibliographic
information about software. That was not limited to Stata, of course; any source code
can be housed in the archive, and there is a nontrivial number of components in the
SSC archive in other languages (however, binary code in the form of .exe is banned for
security reasons).

The popularity of the SSC archive as a single source for user-written Stata commands
was obviously not what StataCorp intended when it created the net commands, but
since then the market has spoken. Most user-programmers find it a useful alternative
to maintaining their own net site. Nick Cox and I wrote archutil (STB, 1999,2 20003)
to implement net for the SSC archive, and StataCorp responded with the full-featured
ssc command. More recently, the development of adoupdate has made it as easy to
stay up to date with user-written software as update does with official Stata. It has
been a very fruitful collaboration.

2. Baum, C. F., and N. J. Cox. 1999. ip29: Metadata for user-written contributions to Stata pro-
gramming language. Stata Technical Bulletin 52: 10–12. Reprinted in Stata Technical Bulletin
Reprints, vol. 9, pp. 121–124. College Station, TX: Stata Press.

3. Cox, N. J., and C. F. Baum. 2000. ip29.1: Metadata for user-written contributions to Stata pro-
gramming language: Extensions. Stata Technical Bulletin 54: 21–22. Reprinted in Stata Technical
Bulletin Reprints, vol. 9, pp. 124–126. College Station, TX: Stata Press.



6 Baum interview

Cox: Do you view yourself as a gatekeeper in any sense over SSC?

Baum: I would have reacted to this question “of course not”, but on this very day,
I found myself looking at the ado-file of a submission and composing an email to the
author indicating that without several changes I could not accept the routine (e.g., thou
shalt not wantonly strew global macros about the user’s workspace). The author kindly
complied and provided a new version, dealing with this and a couple of other issues, the
same day. But generally, I do not read the code, especially that of well-known authors.
It is clearly stated that the material in the archive bears no warranty by virtue of its
inclusion. If clear flaws are pointed out, and an author does not respond to a request to
make corrections to the routine, I will remove it—but that has very rarely happened.

Cox: You have contributed several much-used Stata commands yourself. Do you have
any particular favorites?

Baum: Of course, I am very fond of ivreg2, although Mark Schaffer has contributed
much more of the inventive programming to that routine as it has become more and
more complex. I am proud of the fact that StataCorp was compelled to improve official
Stata’s capabilities in this area, developing the ivregress routine. Between ivregress
and ivreg2, I believe Stata has the best feature set for dealing with instrumental-
variables estimation of any available econometric software. Apart from ivreg2, my
major contributions have been in the time-series area: the first implementation of vector
autoregressions (vecar, made wholly obsolete by Stata’s var suite); rolling regressions
(rollreg, largely superseded by the rolling: prefix); dfgls, with Richard Sperling,
adopted by StataCorp; kpss, modlpr, and roblpr tests for long memory; and several
unit-root tests, now available in official Stata 11. I believe that the popularity of several
of these routines has had a real influence on the course of development at StataCorp
and, in particular, on the strengthening of its capabilities in the time-series domain.
That makes Stata much more competitive with those packages and languages which
have traditionally been used for time-series work. Being able to do that work while
remaining in the Stata environment is very helpful.

Cox: You have presented at many Stata Users Group meetings. Perhaps you could say
something to those who have never been about what they are like.

Baum: The Stata Users Group meetings are always enjoyable experiences for new users
and experienced users alike. The user presentations are an eclectic mix of topics from
a broad set of disciplines, which is very interesting for those of us who only attend eco-
nomics and finance seminars. The techniques of interest in medical fields, for instance,
often provide inspiration for adapting some of that methodology to good advantage in
my own research, although I do not routinely peruse the biostatistics literature. Am-
ple time is given in coffee breaks, luncheons, and dinners for participants to chat with
speakers, both users and StataCorp staff, about their work. Last summer’s DC09 Con-
ference was quite large, with over 100 present each day; but even in that venue, there
were many opportunities for fruitful interactions.
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Cox: You have recently written two fat books for Stata Press. . .

Baum: Well, not fat in comparison to other recent Stata Press offerings, but long
enough to cover the subject in reasonable detail, I believe. I am exceedingly pleased
and humbled by the popularity of An Introduction to Modern Econometrics Using
Stata.4 As Austin Nichols’ excellent SJ review5 indicates, it is not a textbook from
which one learns econometrics, but a guide for those who know some econometrics and
need guidance beyond theory in applying it to their research. Those of us who do
empirical research realize that a small fraction of the research effort involves actual esti-
mation, with a sizable set of data-management tasks preceding estimation and analysis
of econometric results. Likewise, a research project often entails a lot of work in produc-
ing tables, graphs, and the like, and that should be automated. The book stresses how
both of those important ancillary activities are important adjuncts to performing the
proper estimation and conducting the appropriate diagnostic tests. I look forward to
reworking the book someday to include discussion of the new features added in Stata 11,
such as factor variables and margins, that further enhance researchers’ efforts.

I am also very pleased to see that An Introduction to Stata Programming6 has been
quite popular. I have always thought that StataCorp did not make it easy to get into
Stata programming, as most users did not have the Stata Programming Reference Man-
ual available, and numerous important details were only available in that manual. With
the enlightened change in Stata 11, making all the manuals available to every Stata user
in very convenient PDF, the user experience has radically changed. Users are now much
more able to use do-file programming to good advantage with the help of the manuals
and a copy of ISP.

Cox: By the way, we gather that you are a Macintosh user. . .

Baum: I would say that I am a Unix user. During my 30+ years at Boston College
(my one and only academic employer), I have always used Unix machines for serious
computing. In the early years, that meant Digital Equipment Corporation’s flavor of
Unix known as VMS. When we first acquired a “compute server” for academic comput-
ing, it was IBM’s AIX. Later, we acquired a multiprocessor Sun server, and that provided
access to Stata with a useful amount of memory and disk space. When that machine
became obsolete, we replaced it with an Apple xServe. In addition to that machine,
we have a Mac Pro with four-core Intel Xeon to run Stata/MP 11, and the university’s
research computing unit has a Stata/MP license for their Linux cluster.

The point here is not that I use Macintosh: the point is that I use Unix tools (including
the console version of Stata) heavily, and I find that Mac OS X is a convenient way to use
those tools. Linux would be a good choice too, although not quite as well supported in

4. Baum, C. F. 2006. An Introduction to Modern Econometrics Using Stata. College Station, TX:
Stata Press.

5. Nichols, A. 2007. Review of An Introduction to Modern Econometrics Using Stata by Baum. Stata
Journal 7: 131–136.

6. Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.
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terms of software. But the innate stability and professional quality of Unix/Linux/Mac
OS X operating systems stands in stark contrast to the various versions of Windows.
I’ve heard Bill Gould tell us that Windows Vista is actually a great OS, but his beliefs
do not seem to have been shared by the marketplace. Windows 7 may be a great choice,
but I’d rather rely on an operating system that has evolved over several decades, whose
flaws are found by programmers rather than end-users. But one interesting feature of
Apple hardware these days is that it can run any flavor of Windows (and Linux, for
that matter) in addition to Mac OS X. Its industrial design is also highly innovative,
and many of the features common to all machines these days were pioneered by Apple.
So I am quite happy to use Apple hardware and software, and never averse to moving
my compute-bound tasks over to Linux if I need more horsepower. Like about half of
my colleagues in the economics department, I just don’t use Windows.

Cox: How do you see Stata use developing on your side of statistical science?

Baum: I hope that with the aggressive development of new econometric capabilities,
evident in the long list of enhancements to Stata 11, more researchers in economics
and finance will find Stata to be a very useful platform. Those who use Monte Carlo
simulation regularly are often unaware that Stata makes that very straightforward and
efficient. My colleagues who use vector autoregressions and related techniques are not
fully aware that Stata is very competitive in this area. The addition of state-space
modeling, multivariate ARCH, and related time-series techniques should make reliance
on Stata more workable for those of us with needs in that area, and the addition of the
gmm command is an important step forward for our field of research. Nevertheless, I
still believe that several important capabilities are lacking: for instance, estimation and
forecasting of nonlinear simultaneous models (NL3SLS or FIML), support for contour
plots/likelihood profile plots, and support for some forms of 3D graphics. These are
areas where one must be apologetic when colleagues ask “can Stata do . . . ”. I hope
to see developments in these areas, as well as official support of some capabilities for
publication-quality output. On the whole, though, StataCorp has been highly responsive
to researchers’ expressed needs, and that explains a lot of its growing popularity among
researchers in economics, finance, and related disciplines. As an economist, I must
point out that the reasonable price tag certainly doesn’t hurt. I look forward to further
enhancements that will further improve my ability to perform research tasks efficiently
and effectively.

Cox: Thank you, Kit, for your time and thoughts.
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Ana Isabel Palma Carlos Timberlake
(1943–2009)

Ana Timberlake died on 17 December 2009 after a long fight with idiopathic pul-
monary fibrosis. A kind and warm-hearted but also very strong and independent woman,
she was the founder and chairman of Timberlake Consultants Limited (TCL), a firm
specializing in statistical software and consultancy, with particular focus on medical
research and econometric modeling applications.

Ana was born in Portugal, the daughter of a civil engineer. Her early childhood was
on the Pego do Altar Dam construction site in the Alentejo, where her father, Armando
da Palma Carlos, was the resident engineer. Her family were no strangers to strong
women: her aunt Elina Guimarães has been described as the first feminist in Portugal.

Ana took her first degree in mathematics at Lisbon University before moving to
Britain in 1969 to do a Master’s degree in statistics at Southampton University. She
was then employed at a small research unit in London, Planning and Transport Research
and Computation (PTRC).

One of her early assignments at PTRC was a detailed analysis of the U.S. survey upon
which the British breathalyzer test had been based. The original dataset consisted of
8,000 accident records and a further 8,000 controls. Early tabulations suggested that

c© 2010 StataCorp LP gn0049
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driving behavior actually improved with the intake of a small amount of alcohol, which
was contrary to all former laboratory research. However, after Ana had standardized
the data for weather, vehicle age, driving experience, and so forth, it did become clear
that there was a degradation in driving ability with alcohol intake.

While working at PTRC, Ana started upon a doctoral degree at Queen Mary College,
London, under David Barton, into the use of mathematics by scientists and engineers.
This research caused some consternation among certain professions when it showed that
the level of mathematical sophistication generally employed by them barely exceeded
that gained in a O-level mathematics course, as then attained by many 15- or 16-year-
olds.

Ana then joined Control Data Corporation in London as a statistical consultant.
Here she started to form her lifelong and worldwide associations with various academics,
researchers, and developers of statistical techniques and software. This led Ana to
form TCL in 1982 as a firm that specialized in bridging the gap between research and
development and the application of statistics and modeling. She somehow managed
to juggle her family life with successfully building her firm into a fully international
business.

TCL’s links with Stata are especially strong. Timberlake and its associate companies
distribute Stata in the United Kingdom, Brazil, Ireland, Poland, Portugal, and Spain.
Ana had an impact on many Stata users by starting users meetings. The first was held
in London in 1995 and annual meetings have been held there ever since. By the end of
2009, 53 meetings had been held worldwide, all of them following essentially the same
mix of talks and tutorials as originally devised by Ana, and all ending with “Wishes
and grumbles”, Ana’s happy phrase for a session devoted to user comments.

Ana will be very sadly missed, not only by family and friends but also by many
in the wider statistical community who enjoyed their contacts and meetings with her.
Those who knew her personally admired her dignity and courage as she battled over
the last few years with a cruel condition.

Teresa Timberlake and Nicholas J. Cox
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Abstract. In this article, I discuss a method by Erikson et al. (2005, Proceedings
of the National Academy of Science 102: 9730–9733) for decomposing a total
effect in a logit model into direct and indirect effects. Moreover, I extend this
method in three ways. First, in the original method the variable through which
the indirect effect occurs is assumed to be normally distributed. In this article, the
method is generalized by allowing this variable to have any distribution. Second,
the original method did not provide standard errors for the estimates. In this
article, the bootstrap is proposed as a method of providing those. Third, I show
how to include control variables in this decomposition, which was not allowed in
the original method. The original method and these extensions are implemented
in the ldecomp command.

Keywords: st0182, ldecomp, mediation, intervening variable, logit, direct effect,
indirect effect

In this article, I aim to study direct, indirect, and total effects in a logit model and,
in particular, a generalization of a method by Erikson et al. (2005) for computing those
effects when the variable whose effect we want to decompose is a categorical variable.
Direct, indirect, and total effects are studied to reveal a mechanism through which
one variable affects another variable. The idea is illustrated using figure 1: There is
a variable X that has an effect on a variable Y, but part of this effect occurs through
another variable, Z. This indirect effect occurs because X influences Z, which in turn
influences Y. Within this framework, the effect of X on Y while controlling for Z is called
the direct effect. The indirect and direct effect together form the total effect of X on
Y. The indirect effect is the part of the effect of X on Y that can be explained, while
the direct effect is the residual, or unexplained, part of the effect. The aim of such an
analysis is to try to explain why a variable X influences a variable Y by specifying a
mechanism: the effect occurs through the third variable, Z. Z is called an intervening
variable. It differs from a confounding variable in the direction of the effect between X
and Z. If Z was a confounding variable, then it would affect X rather than the other
way around.

c© 2010 StataCorp LP st0182
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X Y

Z

Figure 1. Direct, indirect, and total effects.

X, Y, and Z could be many things. For example, within political science there is
literature (e.g., Campbell et al. [1960]) that explains the effect of party identification (X)
on voting for a party (Y) in part through how one perceives the issues and the parties
(Z). The idea is that someone’s party identification is a relatively stable characteristic
of a person, almost like a personality trait, which can color/distort the perceptions
of the issues and the positions of the candidates or parties,1 which in turn influences
voting behavior. This indirect effect thus represents a mechanism through which party
identification influences voting behavior, and we want to know how important that
mechanism is relative to the total effect of party identification.

Alternatively, within sociology there is literature (e.g., Boudon [1974]) that looks
at the degree to which children from different social backgrounds (X) have different
probabilities of attending college (Y) and the part of this effect that can be ascribed
to an indirect effect through academic performance in high school (Z): Children from
a higher class background do well in high school, and those children who do well in
high school are more likely to attend college. Possible explanations for this could be
that higher class parents have better genes (nature) or are able to provide a more
intellectually stimulating environment for their children (nurture) or both. Again, the
aim is to estimate how important this mechanism is relative to the total effect of family
background.

1. A striking example of this is reported by Bartels (2002), who found in a survey held in 1988 that
more than 50% of the respondents who identified themselves as a “strong Democrat” thought that
the inflation got worse or a lot worse during the Reagan presidency, while only 13% of the “strong
Republicans” thought that this was the case. In actual fact, the inflation rate in consumer prices
fell from 13.5% in 1980 to 4.1% in 1988.
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More generally, the common practice of comparing regression coefficients before and
after controlling for a set of other covariates is implicitly an attempt at decomposing a
total effect into a direct and an indirect effect. Within linear regression ([R] regress),
this is an easy and convenient way of estimating the direct, indirect and total effect. In
this case, the total effect of X is estimated using a regression that does not control for Z.
The direct effect of X is the effect of X in a regression with both X and Z as explanatory
variables, and the indirect effect is the difference between these two, because the total
effect is the sum of the direct and indirect effect. However, this method will not work
when dealing with nonlinear models like logistic regression ([R] logit). In this article, I
will show why this is the case. I will also discuss a method proposed by Erikson et al.
(2005) for solving this problem, I will propose a generalization of this method, and I
will introduce the ldecomp command, which implements these methods in Stata.

1 The problem of indirect effects in a logit model

The key problem when estimating the direct, indirect, and total effects is that the
standard method of estimating them—comparing estimates from models that do and
do not control for Z—will not work in nonlinear models like logistic regression. The
easiest way to see that is in an example where there is no indirect effect.

To illustrate the problem, I create artificial data where I know that there cannot be
an indirect effect of X through Z on Y; I show that the näıve method finds a substantial
indirect effect. The variable Z is created so that it can take three values (0, 1, and 2),
and the variable X is created so that it can take two values (0 and 1). There is no
relationship between X and Z (a low X individual is as likely to be a high value on Z as
a high X individual). So in this example, there is no indirect effect of X on Y through
Z. We start by creating the variables X and Z:

. drop _all

. set obs 60000
obs was 0, now 60000

. generate z = ceil(_n/20000) - 1

. bysort z: generate x = ceil(_n/10000) - 1

. tab x z

z
x 0 1 2 Total

0 10,000 10,000 10,000 30,000
1 10,000 10,000 10,000 30,000

Total 20,000 20,000 20,000 60,000

Next we create the dependent variable Y according to the logistic regression equation
P (y = 1)/1 − P (y = 1) = −4 + 4X + 2Z, as discussed in Buis (2007b).

. set seed 12345

. generate y = runiform() < invlogit(-4 + 4*x + 2*z)
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Next we compute the näıve estimates of the indirect effect:

. quietly logit y x z

. estimates store direct

. local direct = _b[x]

. quietly logit y x

. estimates store total

. local total = _b[x]

. estimates tab direct total

Variable direct total

x 4.0391332 2.6256242
z 2.026339

_cons -4.0452305 -1.3123133

. display "naive indirect effect = " `total´ - `direct´
naive indirect effect = -1.413509

Someone who did not know that the data were created such that the indirect effect
is exactly zero and so used the näıve estimate of the indirect effect would conclude that
the indirect effect is about 54% of the total effect; the fact that it has the opposite sign
from the total effect would suggest that this indirect effect has a noticeable dampening
influence on the effect of X on Y. This is not caused by sampling variation but instead
caused by a structural bias in the näıve estimator.

The reason for this bias is that a logistic regression is comparison of proportions
that have first been transformed into log odds-ratios;2 this is illustrated in figure 2. It
consists of four vertical lines: on the two outer lines are plotted the probabilities of
success on Y, while the equivalent log odds are plotted on the two inner lines. The two
left lines represent the high X group, while the two right lines represent the low X group.
The open symbols and the solid arrows show how the probabilities are transformed into
log odds and how, within each category of Z, the log odds of the high X group are
compared with the log odds of the low X group.

This represents what happens when we estimate a logit model with both X and Z
as explanatory variables. When we leave the variable Z out of the model—for example,
because we want to estimate the total effect—we are in effect first computing the average
of the proportions and then transforming them into log odds. This is represented by the
closed circles and the dashed arrows. However, the more extreme values are less extreme
in the probability metric than in the log odds metric; that is, the probabilities close to
either 0 or 1 are more bunched together than their log odds counterparts. Therefore,
computing the average proportion before transforming the proportions into log odds
means that the extreme values are less influential than they would have been if the

2. The odds and the log odds contain exactly the same information as the proportion, just presented
differently. The proportions times a hundred tell you how many people out of a hundred are
expected to attend college, while the odds tell you how many people are expected to attend college
for every person who does not attend college. The odds (O) can be derived from the proportion
(p) in the following way: O = p/1 − p.
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means were computed in the log odds metric, so the average is being pulled toward the
less extreme categories. As a consequence, the effect in terms of log odds will be less
when Z is left out of the model, even if there is no indirect effect. This problem is very
similar to the problems discussed in Bartus (2005) and Buis (2007a).
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Figure 2. The effect of X with and without controlling for Z.

2 A solution

2.1 Outline

For there to be an indirect effect of X on Y through Z, X needs to have an effect on
Z and Z has to have an effect on Y. For example, children from higher classes (X) are
likely to do better in high school (Z) than children from lower classes, and those who
have done better in high school (Z) are more likely to enter college (Y). In figure 2, there
was no indirect effect because the distribution of Z was the same for both categories of
X. In figure 3, this has changed to include an indirect effect. The distribution of Z is
represented by the size of the symbols. So in this new example, there are within the
high X group more high Z individuals than medium Z individuals and more medium Z
individuals than low Z individuals. The distribution of Z for the low X group is exactly
the opposite. Now there are two reasons why high X individuals are more likely to
belong to the high Y group: 1) They are more likely to belong to the high Z group, and
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those who belong to the high Z group are more likely to belong to the high Y group.
This is the indirect effect of X through Z on Y. Figure 3 shows this in the following
way: for the high X group, the high Z group is more influential when computing the
average probability because the high Zs are more numerous, while for the low X group,
the low Zs are more influential. This leads to a larger difference between the high and
low status group. 2) They are more likely to belong to the high Y group even when
compared with a low X group that has the same value on Z. Figure 3 shows this in the
following way: for each level of Z, the high X group has a higher proportion belonging
to the high Y group than does the low X group. This is the direct effect.
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Figure 3. Indirect and direct effects.

Erikson et al. (2005) propose two related methods for estimating a direct, indirect,
and total effect such that the direct and indirect effects add up to the total effect. The
first method is illustrated in figure 4 and consists of the following steps:

1. Estimate a logistic regression using both X and Z, and optionally, the interactions
between X and Z.

2. Predict for each individual the log odds of success on Y (this is the linear predictor)
and transform these to probabilities.
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3. Compute within each group of X the average predicted probability and transform
these to log odds. The difference in these log odds between the groups of X
represents the total effect.

4. Assume that the low X individuals are actually high X individuals, predict for
each low X individual the log odds in this counterfactual scenario, and transform
these to probabilities.

5. Compute the average of these probabilities. This is the counterfactual probability
of success on Y for high X individuals if they had the distribution of Z of the low
X individuals. These are then transformed into log odds.

6. The high X individuals and this counterfactual group differ with respect to the
distribution of Z, but the probabilities conditional on X and Z are kept constant.
Therefore, comparing these groups gives the effect of X caused by the differences
in the distribution of Z, that is, the indirect effect.

7. The low X individuals and the counterfactual group differ with respect to the
probabilities conditional on X and Z, but the distribution of Z is kept constant.
Therefore, comparing these groups gives the effect of X while controlling for the
distribution of Z, that is, the direct effect.
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Figure 4. Method 1.
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Figure 4 above and (1) on the following page both show that this way the total effect
is always the sum of the direct and indirect effect. In (1), the O is the odds of success
on Y, the first subscript represents the logistic regression coefficients, and the second
subscript represents the distribution of Z.3 So Ox=1,z | x=1 is the odds of success for the
high X group, while Ox=1,z | x=0 is the counterfactual odds of success for the high X
group if it had the distribution of Z of the low X group.

ln(Ox=1,z | x=1) − ln(Ox=0,z | x=0)︸ ︷︷ ︸
total

= ln(Ox=0,z | x=1) − ln(Ox=0,z | x=0)︸ ︷︷ ︸
indirect

+

ln(Ox=1,z | x=1) − ln(Ox=0,z | x=1)︸ ︷︷ ︸
direct

(1)

Using the rule that ln(a) − ln(b) = ln(a/b), it can be shown that these effects are
actually log odds-ratios:

ln
(
Ox=1,z | x=1

Ox=0,z | x=0

)
︸ ︷︷ ︸

total

= ln
(
Ox=0,z | x=1

Ox=0,z | x=0

)
︸ ︷︷ ︸

indirect

+ ln
(
Ox=1,z | x=1

Ox=0,z | x=1

)
︸ ︷︷ ︸

direct

(2)

This means that this decomposition can also be presented in terms of odds ratios, by
exponentiating both sides of (2). Because of the rule that exp(a+ b) = exp(a)× exp(b),
the total effect is now the product of the direct and indirect effects:

Ox=1,z | x=1

Ox=0,z | x=0︸ ︷︷ ︸
total

=
Ox=0,z | x=1

Ox=0,z | x=0︸ ︷︷ ︸
indirect

× Ox=1,z | x=1

Ox=0,z | x=1︸ ︷︷ ︸
direct

(3)

The second method of decomposing the total effect into a direct and indirect effect
proposed by Erikson et al. (2005) is exactly the same as the first method, except that it
uses the counterfactual probability of success on Y for the low X individuals assuming
that they have the distribution of Z of the high X individuals, as is illustrated in figure 5.
The logic behind these two methods is exactly the same, but they do not have to result
in exactly the same estimates for the direct and indirect effects, though they are often
very close. Jackson et al. (2007) propose to solve this problem by computing the size of
the indirect effect relative to the total effect using both methods and report the average
of the two.

3. In fact, as can be seen in the description of this technique, these are averaged estimated log odds,
so some people would prefer to incorporate that in the notation by adding hats and bars. However,
I think that this notation is complicated enough as is, and hats and bars are not crucial for the
points that these equations make, so I chose not to include them.
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Figure 5. Method 2.

Another difficulty with this method is that the variable whose effect we want to
decompose (X) must be categorical and the number of effects that must be decom-
posed increases very quickly with the number of categories in X. The reason is that
the decomposition will be different for all pairwise comparisons of categories. Normally,
a categorical explanatory variable consisting of C categories can be entered as C − 1
dummies, with each dummy representing a comparison between the reference category
and one of the other categories, leading to C−1 effects. All other pairwise comparisons
can be directly derived from those effects. Consider a logit model with a categorical
variable with three categories—low (x = 0), middle (x = 1), and high (x = 2)—and
the low category was chosen to be the reference category. This will result in two odds
ratios: the odds ratio comparing the medium and the low group, and the odds ratio
comparing the high and the low group, or Ox=1/Ox=0 and Ox=2/Ox=0, respectfully.
This excludes the third possible comparison: the medium versus the high group. This
comparison can be derived directly from the other two odds ratios by dividing the two
odds ratios:

Ox=1/Ox=0

Ox=2/Ox=0
=
Ox=1

Ox=0
× Ox=0

Ox=2
=
Ox=1

Ox=2
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This same reasoning, however, will not work for the decomposition. Consider the
three indirect effects we get when using the first method: Ox=0,z | x=1/Ox=0,z | x=0,
Ox=0,z | x=2/Ox=0,z | x=0, and Ox=1,z | x=2/Ox=1,z | x=1.

Ox=0,z | x=2/Ox=0,z | x=0

Ox=0,z | x=1/Ox=0,z | x=0
�= Ox=1,z | x=2

Ox=1,z | x=1

So with this decomposition, we cannot get away with only presenting all comparisons
with a single reference category (leading to C − 1 effects), but we will have to display
the decomposition for all pairwise comparisons (leading to

(
C
2

)
effects).

2.2 Generalization

In the original formulation of this method, the variable through which the indirect ef-
fect occurs (Z) has to be normally distributed. This is because of the way Erikson et al.
(2005) propose to compute the average predicted probabilities. As discussed in steps
3 and 5 in the previous section, these averaged predicted probabilities play a key role
in this decomposition. Erikson et al. (2005) compute these averages by assuming that
Z follows a normal distribution, and then they integrate over this distribution. This
method is generalized in this article to allow Z to follow any distribution by comput-
ing the average predicted probability by using the arithmetic mean of the predicted
and counterfactual probabilities, thereby integrating over the empirical distribution of
Z instead of over a normal distribution. As an added bonus, this method is also easier
to compute because the integration over the normal distribution has to be done nu-
merically since there is no closed-form solution for this integral. For these reasons, the
generalized method is the default method in the ldecomp command, which implements
both decompositions in Stata.

2.3 Standard errors

To get an idea about the degree of uncertainty around these estimates, one would
usually also estimate standard errors. These are not provided by Erikson et al. (2005)
and Jackson et al. (2007), but can be easily computed using the bootstrap (Efron and
Tibshirani 1993). The bootstrap uses the idea that the standard error is the result
of the following thought experiment: Assume we could draw many samples from the
population and compute a statistic in each of these samples. Because these samples
will slightly differ from one another, so will the estimates of the statistic. The standard
error is the standard deviation of these different estimates and indicates how much
variation one can expect due to the estimate being based on a random sample. Drawing
many random samples from the population is not practical, but we do have a good
estimate of the population—the sample—and we can without any difficulty draw (with
replacement) many samples from this “estimate of the population”. So when using the
bootstrap, many samples are drawn with replacement from the observed sample, the
statistic is computed within each sample, and the estimate of the standard error is the
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standard deviation of these statistics. Within Stata, this process has been automated
with the bootstrap command; see [R] bootstrap.

2.4 Control variables

Control variables can be included in this method by estimating the logit model from
step 1 (in section 2.1) including these control variables, but afterward, at steps 2 and
4, fixing their value at one specific value, for example their mean.

3 Implementation in Stata

Both the original method proposed by Erikson et al. (2005) and the generalizations
proposed in this article have been implemented in Stata as the ldecomp command.

3.1 Syntax

ldecomp depvar
[
control var1

[
...

] ] [
if
] [

in
] [

weight
]
, direct(varname)

indirect(varlist)
[
at(control var1 #

[
; control var2 #

] [
...

]
) obspr

predpr predodds or rindirect normal range(# #) nip(#) interactions

nolegend nodecomp nobootstrap bootstrap options
]

fweights, pweights, and iweights are allowed when the nobootstrap option is speci-
fied.

3.2 Options

direct(varname) specifies the variable whose direct effect we want to decompose into
an indirect and total effect. This has to be a categorical variable, and each value of
varname is assumed to represent a group.

indirect(varlist) specifies the variable(s) through which the indirect effect occurs. By
default, multiple variables are allowed and these can follow any distribution. If the
normal option is specified, only one variable may be entered, and this variable is
assumed to be normally distributed.

at(control var1 #
[
; control var2 #

] [
...

]
) specifies the values at which the control

variables are to be fixed. The default is to fix the control variables at their mean
value.

obspr specifies that a table of the observed proportions be displayed.



22 Direct and indirect effects in a logit model

predpr specifies that a table of predicted and counterfactual proportions be displayed.
If the normal option is not specified and there are no control variables, then the
diagonal elements of this table will be exactly the same as the observed proportions.

predodds specifies that a table of predicted and counterfactual odds be displayed.

or specifies that the decomposition be displayed in terms of odds ratios instead of log
odds-ratios.

rindirect specifies that the relative contributions of the indirect effects to the total
effect (in terms of log odds-ratios) be displayed.

normal specifies that the predicted and counterfactual proportions be computed accord-
ing to the method specified by Erikson et al. (2005). This means that the variable
specified in indirect() is assumed to be normally distributed. This option was
primarily added for compatibility with Erikson et al. (2005). By default, ldecomp
uses the more flexible method described in this article.

range(# #) specifies the range over which the numerical integration of the variable
specified in indirect() is to be performed. The default is the minimum of that
variable minus 10% of the range of the variable and the maximum of the variable
plus 10% of the range of the variable. This option may only be specified with
the normal option because in the default method there is no need for numerical
integration.

nip(#) specifies the number of integration points used in the numerical integration of
the variable specified in indirect(). The default is nip(1000). This option may
only be specified with the normal option because in the default method there is no
need for numerical integration.

interactions specifies that interactions between the categories of the variable specified
in direct() and the variable(s) specified in indirect() be included. In other words,
the effects on the dependent variable of the variables specified in indirect() are
allowed to differ from one another for each category of the variable specified in
direct(). This option was added primarily for compatibility with Erikson et al.
(2005).

nolegend suppresses the legend that is by default displayed at the bottom of the main
table.

nodecomp prevents ldecomp from displaying the table of decompositions, which can be
useful in combination with the obspr, predpr, or predodds options.

nobootstrap prevents ldecomp from using bootstrap to calculate standard errors.

bootstrap options are allowable options of bootstrap. The following options are allowed:
reps(#), strata(varlist), size(#), cluster(varlist), idcluster(newvar), bca,
saving(filename

[
, suboptions

]
), jackknifeopts(jkopts), mse, seed(#), nodots,

and level(#). See [R] bootstrap.
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3.3 Example

The use of ldecomp is illustrated using data from the Wisconsin Longitudinal Study
(Hauser and Sewell 1957–1977), which contain data on a random sample of 10,317 men
and women who graduated from Wisconsin high schools in 1957. In this example, we
want to study the part of the effect of social class on the probability of entering college
that can be explained by performance during high school. The dependent variable is
whether a respondent ever attended college (college). Class is measured by the type
of occupation of the father (ocf57). The original data contained five classes, which
would lead to

(
5
2

)
= 10 effects that are to be decomposed. To keep the number of

effects manageable, the number of classes has been reduced to three: a lower class
(unskilled workers and farmers), a middle class (skilled workers), and a higher class
(white collar workers, professionals, and executives). The performance during high
school is measured with the percentile rank of high school grades (hsrankq). This
means that computing the counterfactual proportions using the method proposed by
Erikson et al. (2005) will be problematic, because percentile rank scores will follow a
uniform distribution instead of a normal distribution. However, the default method
can be used without problem because it does not make any assumption about the
distribution of performance. Relevant descriptive statistics are shown below:

. use wisconsin, clear
(Wisconsin Longitudinal Study)

. recode ocf57 2=1 3=2 4=3 5=3
(ocf57: 6196 changes made)

. label define ocf57 1 "lower" 2 "middle" 3 "higher", modify

. label value ocf57 ocf57

. table ocf57 if !missing(hsrankq, college),
> contents(mean college mean hsrankq freq) format(%9.3g) stubwidth(15)

occupation of r
father in 1957 mean(college) mean(hsrankq) Freq.

lower .284 48.2 5218
middle .38 50.6 868
higher .619 56.2 2837

There are big differences between the classes in the proportion of respondents that
attend college. Moreover, those classes with a low proportion attending college also
tend to have done worse during high school. So part of the differences in proportions
attending college could be due to differences in performance. ldecomp is used to estimate
these direct, indirect, and total effects. In the example below, the effects are presented as
odds ratios, so the total effect is the product of the indirect and direct effect. Consider
the decomposition according to the first method of the difference between high class
(denoted as 3) and low class (denoted as 1) students, that is, the first three coefficients
of the panel labeled “3/1”. Overall, the odds of attending college for high class students
is 4.10 times as large as the odds for low class students (the total effect). Low class
students would have 1.23 times higher odds of attending college if they had the same
performance as high class students (indirect effect according to method 1), while the
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high class students would have 3.34 times higher odds of attending college than low
class students when we keep the performance constant at the level of high class students
(direct effect according to method 1).

. ldecomp college, direct(ocf57) indirect(hsrankq) or
(running _ldecomp on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 8923
Replications = 50

Observed Bootstrap Normal-based
Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

2/1
total 1.547746 .1087768 6.22 0.000 1.34858 1.776327

indirect1 1.061166 .0297615 2.12 0.034 1.004408 1.12113
direct1 1.458534 .0889065 6.19 0.000 1.294287 1.643624

indirect2 1.060416 .0292343 2.13 0.033 1.004638 1.11929
direct2 1.459565 .0889226 6.21 0.000 1.295284 1.644683

3/1
total 4.098896 .1563335 36.99 0.000 3.80366 4.417047

indirect1 1.228616 .0205526 12.31 0.000 1.188987 1.269566
direct1 3.33619 .1231675 32.63 0.000 3.103313 3.586542

indirect2 1.22293 .0212813 11.56 0.000 1.181922 1.26536
direct2 3.351702 .1256571 32.26 0.000 3.114249 3.607259

3/2
total 2.6483 .1803249 14.30 0.000 2.317438 3.026399

indirect1 1.157325 .03452 4.90 0.000 1.091606 1.226999
direct1 2.288295 .1361168 13.92 0.000 2.036475 2.571253

indirect2 1.153977 .0331169 4.99 0.000 1.090861 1.220745
direct2 2.294933 .1384071 13.77 0.000 2.039079 2.582889

in equation i/j (comparing groups i and j)
let the fist subscript of Odds be the distribution of the the indirect variable
let the second subscript of Odds be the conditional probabilities
Method 1: Indirect effect = Odds_ij/Odds_jj

Direct effect = Odds_ii/Odds_ij
Method 2: Indirect effect = Odds_ii/Odds_ji

Direct effect = Odds_ji/Odds_jj

value labels
1 lower
2 middle
3 higher

To get an idea of the relative importance of the indirect effect compared with the
total effect, one can add the rindirect option, like in the example below. This means
that the sizes of the indirect effects relative to total effects are shown at the bottom of the
decomposition table. These are labeled #/#r. So if we look again at the comparison
between children from higher and lower class fathers (the rows labeled 3/1 and 3/1r),
we see that according to method 1 the indirect effect is 0.206/1.41 × 100% = 14.6%
of the total effect. According to method 2, this is 0.201/1.41 × 100% = 14.3%. So,
on average, the indirect effect is 14.5% of the total effect. In general, this table shows
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that the size of the indirect effect is about 14 percent of the total effects. Additionally,
the example below illustrates that by leaving out the or option, ldecomp will show the
direct, indirect, and total effects in terms of log odds-ratios, which means that the total
effect is now the sum of the direct and indirect effects.

. ldecomp college, direct(ocf57) indirect(hsrankq) rind nolegend
(running _ldecomp on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 8923
Replications = 50

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

2/1
total .4367997 .0681297 6.41 0.000 .303268 .5703314

indirect1 .0593679 .0244276 2.43 0.015 .0114906 .1072451
direct1 .3774319 .0684413 5.51 0.000 .2432894 .5115743

indirect2 .0586611 .0240686 2.44 0.015 .0114875 .1058347
direct2 .3781386 .0684292 5.53 0.000 .2440198 .5122575

3/1
total 1.410718 .0421018 33.51 0.000 1.3282 1.493236

indirect1 .2058881 .014635 14.07 0.000 .177204 .2345723
direct1 1.204829 .0390007 30.89 0.000 1.12839 1.281269

indirect2 .2012494 .014978 13.44 0.000 .1718931 .2306057
direct2 1.209468 .0386461 31.30 0.000 1.133723 1.285213

3/2
total .9739179 .075011 12.98 0.000 .8268989 1.120937

indirect1 .1461109 .0234312 6.24 0.000 .1001865 .1920353
direct1 .8278069 .0759825 10.89 0.000 .678884 .9767298

indirect2 .1432144 .0237856 6.02 0.000 .0965955 .1898332
direct2 .8307035 .0760533 10.92 0.000 .6816418 .9797652

2/1r
method1 .1359155 .0574128 2.37 0.018 .0233885 .2484425
method2 .1342975 .0568445 2.36 0.018 .0228844 .2457105
average .1351065 .0571076 2.37 0.018 .0231776 .2470354

3/1r
method1 .1459457 .0096034 15.20 0.000 .1271234 .164768
method2 .1426575 .0097455 14.64 0.000 .1235567 .1617583
average .1443016 .0095878 15.05 0.000 .1255099 .1630933

3/2r
method1 .1500239 .0256887 5.84 0.000 .0996749 .2003729
method2 .1470497 .0258689 5.68 0.000 .0963475 .1977519
average .1485368 .0256919 5.78 0.000 .0981816 .198892

Notice that the size of the indirect effect relative to the total effect can be larger than
100%, negative, or both. This might puzzle people who think of these relative effects as
the proportion of the total effect that can be explained by the indirect effect. However,
there is no reason why the direct and indirect effect cannot have opposite signs, and in
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those cases, these “weird” proportions can occur. Thinking of these numbers as the size
of the indirect effect relative to the size of the total effect can help avoid confusion.

In addition to the decomposition itself, ldecomp can produce a number of tables
that together illustrate step by step how it builds this decomposition. The first of these
tables is the table of the predicted and counterfactual proportions, shown below.

. ldecomp college, direct(ocf57) indirect(hsrankq) predpr nodecomp

predicted and counterfactual proportions

association
distribution lower middle higher

lower .284 .366 .571
middle .296 .38 .585
higher .327 .415 .619

The diagonal elements in this table represent the predicted proportions, both fac-
tual distribution of performance (the rows) and factual conditional probabilities (the
columns), while the off-diagonal elements represent the counterfactual proportions. For
example, 28.4% of the children from lower class fathers will attend college. If these
children had the same performance as the children of higher class fathers, then 32.7%
of them would attend college. If they had the same conditional probabilities as the
children of higher class fathers, then 57.1% would attend college. This indicates that
the direct effect is stronger than the indirect effect. The next step in the computation
is to transform these proportions into odds:

. ldecomp college, direct(ocf57) indirect(hsrankq) predodds nodecomp

predicted and counterfactual odds

association
distribution lower middle higher

lower .396 .578 1.33
middle .421 .613 1.41
higher .487 .71 1.62

The proportions are transformed into odds by dividing the proportion by one minus
the proportion, so the odds of attending college for children from lower class fathers is
0.284/1 − 0.284 = 0.397. The difference between this number and the number in the
table is caused by rounding. This odds is interpreted as follows: for every child of a
lower class father who does not go to college, there are only 0.397 children of lower class
fathers who do go to college.

The results that were obtained at the beginning of this example can be computed
using the predicted and counterfactual odds from the previous table. For example, if
we return to the decomposition of the total effect of having a higher class father rather
than a father from the lower class using method 1, we can compute it by filling in (3)
with the predicted and counterfactual odds from the previous table:
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1.62
0.396︸ ︷︷ ︸
total

=
0.487
0.396︸ ︷︷ ︸
indirect

× 1.62
0.487︸ ︷︷ ︸
direct

4.09︸︷︷︸
total

= 1.23︸︷︷︸
indirect

× 3.33︸︷︷︸
direct

This example also makes it possible to see if the näıve method is really as bad as I
claim, and if the generalization that I proposed in this article is really an improvement.
We know that hsrankq deviates considerably from a normal/Gaussian distribution,4 so
if the generalized method is an improvement on the original method, then in this example
it should yield noticeably different estimates. The estimates using the original method
by Erikson et al. (2005) are obtained by specifying the normal option in ldecomp.

The näıve estimate was computed as follows: First, a logit model of college on
ocf57 was estimated. The effect of ocf57 is the näıve estimate of the total effect. Then
a logit model of college on ocf57 and hsrankq was estimated. The effect of ocf57 is
the näıve estimate of the direct effect. The näıve estimate of the indirect effect relative
to the total effect is (total effect − direct effect) / total effect. The results are shown in
table 1. This table clearly illustrates the major underestimation of the indirect effect
when the näıve method is used. Moreover, the method by Erikson et al. (2005) also leads
to a considerable underestimation of about a quarter of the effect obtained using the
generalized method. This underestimation is the result of the incorrect assumption made
by Erikson et al. (2005) that hsrankq is normally distributed. Because the generalized
method makes no such assumption, it seems to be the safest method of the three for
computing the decomposition of total effects into direct and indirect effects after a
logistic regression model.

Table 1. Comparing different estimates of the size of the (average) indirect effect relative
to the size of the total effect.

generalization Erikson et al. (2005) näıve

middle versus low 0.135 0.110 0.009
high versus low 0.144 0.105 0.014
high versus middle 0.149 0.102 0.017

4 Summary and discussion

In this article, I began by showing why getting estimates of the direct and indirect effects
in a logistic regression is hard. I then presented a method by Erikson et al. (2005) to

4. As noted before, it is a percentile rank score, so it follows a uniform distribution.
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estimate these effects, and I proposed a generalization of this method. The idea is that
a categorical variable X can have a direct effect on a variable Y and an indirect effect
through Z. One can find the direct effect of X by comparing the log odds of successes in
one category of X with the counterfactual log odds of successes of another category of
X given that they have the distribution of Z of the first category. This way, the factual
and counterfactual group only differ with respect to X and not with respect to the
distribution of Z, thus controlling for the distribution of Z. Similarly, the indirect effect
can be found by comparing the log odds of success within one category of X with the
counterfactual log odds of success within that same category of X with a distribution of
Z of another category of X. This way, the factual and counterfactual groups differ only
with respect to the distribution of Z. In its original form, this method assumed that
the variable through which the indirect effect occurs has a normal distribution. In this
article, this method was generalized by allowing the variable to have any distribution.
Moreover, the use of the bootstrap is proposed to estimate standard errors, and I added
the possibility to include control variables.

This is a relatively new methodology, and so there are still some loose ends to tie
up. First, the fact that there are two different estimates of the direct effects and two
different estimates of the indirect effects is less than elegant. Second, the fact that
a separate decomposition needs to be estimated for all pairwise class comparisons in-
stead of all comparisons with a single reference category can quickly lead to a very
large number of estimates. Third, this method is not the only way of attaining esti-
mates of direct and indirect effects; there are, for instance, the methods proposed by
Gomulka and Stern (1990), Even and Macpherson (1990), Fairlie (2005), Yun (2004),
and Bauer and Sinning (2008). Two of these have been implemented in Stata: the
method by Fairlie (2005) in the fairlie command (Jann 2006), and the method by
Bauer and Sinning (2008) in the nldecompose command (Sinning, Hahn, and Bauer
2008). How these alternatives compare with the method discussed in this article needs
to be explored.
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Abstract. The World Bank’s world development indicators (WDI) compilation
is a rich and widely used database about the development of most economies
in the world. However, after insheeting a WDI dataset, some data management
is required prior to performing statistical analysis. In this article, I propose a
new Stata command, wdireshape, for automating this data management. While
reshaping a WDI dataset into structures amenable to panel data, seeming unrelated
regression, or cross-sectional modeling, wdireshape renames the series and places
the series descriptors into variable labels.

Keywords: dm0045, wdireshape, paverage, world development indicators, reshape,
panel data, seeming unrelated regression

1 Introduction

The World Bank’s world development indicators (WDI) compilation is a rich and widely
used database about the development of most countries in the world, with time series
going back to 1960. The 2009 WDI compilation consists of more than 800 indicators
in over 90 tables organized in 6 sections, including world view, people, environment,
economy, states and markets, and global links (The World Bank Group, 2009). The
WDI database is available online for a paid subscription or on a CD-ROM as a purchase.
However, after insheeting a WDI dataset, some data management is required prior to
performing statistical analysis. Further, while the World Bank has made great strides in
rendering WDI in several forms for download, seemingly unrelated regressions analysis,
for example, cannot be carried out using any of such forms. The new Stata command
wdireshape, presented in this article, automates the data management required to get
the data ready for statistical analysis. In particular, wdireshape allows you to obtain
data structures amenable to panel data, seeming unrelated regression, or cross-sectional
modeling.

The next section presents the wdireshape command, and section 3 expands on data
preparation and how to get WDI data into Stata. Section 4 outlines wdireshape syntax
and options, while examples are presented in section 5. Section 6 concludes the article.

c© 2010 StataCorp LP dm0045
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2 The wdireshape command

wdireshape reshapes a Stata dataset obtained by insheeting a text (.csv) file down-
loaded from the WDI World Bank web site or extracted from the WDI CD-ROM. Depend-
ing on the option specified with wdireshape, the new dataset has a structure suitable
for panel-data analysis, seemingly unrelated regression (SUR), or cross-sectional model-
ing. The panel-data structure is known as long form, and the SUR and cross-sectional
structures are known as wide form. During the reshaping process, wdireshape places
the WDI series descriptors into Stata variable labels and enables users to supply, in a
varlist, names of their devising for the WDI series.

3 Data preparation

Before extracting a .csv file from the WDI web site or a recent CD release, users must
choose a data orientation with series or country in rows and time in columns. The .csv
file can be imported into Stata by typing

. insheet using filename.csv, names clear

wdireshape works on this insheeted dataset. Older CD releases, such as the WDI-2005

CD-ROM, produce .csv files that must be managed prior to insheeting. In particular,
the years must be prepended with a letter, which can be done in a spreadsheet or by
using the procedure suggested in Baum and Cox (2007).

4 Commands

4.1 Syntax for wdireshape

The syntax to check the number of indicators and their order of appearance in a WDI

dataset is

wdireshape, sername(varname)

The syntax to reshape the dataset is

wdireshape newvarlist, prepend(letter(s)) ctyname(varname) sername(varname)

ctycode(varname) sercode(varname)
[
byper(#) startyr(#) endyr(#)

byvar sur cros nstring(#)
]

(Continued on next page)
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4.2 Options for wdireshape

Required options

prepend(letter(s)) specifies the letters with which the years are prepended. One or two
letters from a to z should be used. When insheeting a WDI dataset downloaded from
the World Bank’s web site, the years are prepended with “yr”.

ctyname(varname) specifies the variable containing the country names.

sername(varname) specifies the variable holding the series names.

ctycode(varname) specifies the variable containing the country code elements.

sercode(varname) specifies the variable containing the series code elements.

With these five required options specified, wdireshape will attempt to reshape the
entire dataset at once, which is the default. Due to memory issues, reshaping large
datasets at once may not be successful. In such a case, Stata will prompt the user to
specify the byvar or byper(#) option, or to increase the amount of memory allocated
to Stata. You can reset the size of memory only if you are using Stata/MP, Stata/SE,
or Stata/IC.

Optional options

byper(#) requires wdireshape to reshape the dataset 1 year, 5 years, or 10 years at a
time, as long as the time span contains no gaps. One of these three values should
be used with the byper(#) option. If either 5 or 10 is specified, wdireshape will
account for the fact that the last subperiod may not be of 5 or 10 years. Also, Stata
will check whether the current memory size is enough to reshape the data 5 or 10
years at a time.

startyr(#) specifies the first year of the time period.

endyr(#) specifies the last year of the time period.

Note 1: The byper(#), startyr(#), and endyr(#) options must be combined.

byvar specifies that the dataset be reshaped one variable at a time, as proposed by
Kossinets (2006). The byvar option may not be combined with byper(#),
startyr(#), and endyr(#).

sur requests a wide form suitable for (SUR) analysis (see [R] sureg). By default, the
dataset is reshaped in long form for panel-data analysis (see [XT] xtreg). When
this option is specified, in the reshaped dataset, the country names are postfixed to
the user-supplied variable names and are represented by c1, c2, etc. describe the
reshaped dataset if you want to know which countries c1, c2, . . . , cn represent. In
Stata 10 or higher, you can just look at the variable labels in the variable window.
The SUR-reshaped structure displays the years in rows and the variables, for each
country, in columns.
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cros requests a wide form suitable for cross-sectional analysis. The cros-reshaped
structure displays the country names in rows and the variables, for each year, in
columns. Obviously, the cros option may not be combined with sur.

Note 2: When the sur or cros option is specified, Stata will complain if the
resulting number of variables exceeds its limits, which are 99 for Small Stata, 2,047 for
Stata/IC, and 32,767 for Stata/MP and Stata/SE.

nstring(#) indicates that the dataset contains the WDI missing-value symbols, the
double dots (..), and that they should be removed from the reshaped dataset. # rep-
resents the number of identifier variables in the dataset. For example, nstring(4)
must be specified when the dataset includes names and code elements for both coun-
tries and series as identifier variables. When the nstring(#) option is specified, if
an error occurs for any reason, the dataset to be reshaped needs to be reloaded be-
fore running wdireshape again. Otherwise, Stata will abort with a type-mismatch
error.

Note 3: In the case of large datasets, reshaping 10 years at a time—as long as the
time period is at least 10 years and there is enough memory—would be much faster
than reshaping variable by variable. However, when the time period contains gaps,
byper(#) will not work.

4.3 Syntax for paverage

The syntax to calculate p-year averages of the variables in a panel dataset is

paverage varlist, p(#) indiv(varname) yr(varname)

4.4 Description of paverage

paverage (pronounced p-average) calculates series of averages in a panel dataset. In
the process, the labels of the original variables, if present, are attached to the average
variables. The time period must be a multiple of the subperiod over which averages
need to be calculated. When analyzing a panel dataset with a long time period, using
series of averages is a common way to reduce business-cycle effects and measurement
error.

4.5 Options for paverage

p(#) indicates the number of years for which averages need to be calculated. # ranges
from 2 to 10. For example, specifying p(5) will create a five-year average dataset.

indiv(varname) specifies the variable name containing the country names, individuals,
or firms.

yr(varname) specifies the variable name holding the years.
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5 Examples

This section illustrates wdireshape, and all examples use data downloaded from the
WDI web site.

5.1 Example 1: Reshape everything at once for panel-data analysis

To import the data, type

. set memory 20m
(20480k)

. insheet using wdi_exmpl1.csv, names clear
(46 vars, 577 obs)

I take a look at the raw dataset by listing a few observations for three countries and
two years of the time period, 1961 and 2002.

. list countryname seriesname yr1961 yr2002 in 1/13, sepby(countryname)
> string(30) noobs

countryname seriesname yr1961 yr2002

Afghanistan Foreign direct investment, net.. .. ..
Afghanistan GDP (current US$) 1240000000 4040000000
Afghanistan Trade (% of GDP) 12.55061 ..

Algeria Foreign direct investment, net.. .. 1.904728
Algeria Foreign direct investment, net.. .. 1070000000
Algeria Foreign direct investment, net.. .. ..
Algeria GDP (current US$) 2430000000 55900000000
Algeria Trade (% of GDP) 113.7483 61.70864

Angola Foreign direct investment, net.. .. 15.43182
Angola Foreign direct investment, net.. .. 1670000000
Angola Foreign direct investment, net.. .. 0.2648883
Angola GDP (current US$) .. 10800000000
Angola Trade (% of GDP) .. 143.2107

Prior to reshaping the data, I use the first syntax of wdireshape to rigorously check
the number of variables (series/indicators) and their order of appearance. I recommend
doing this check before reshaping the data.

. wdireshape, sername(seriesname)

The current dataset contains 5 variables in the following order:

1) Foreign direct investment, net inflows (% of GDP)
2) Foreign direct investment, net inflows (BoP, current US$)
3) Foreign direct investment, net outflows (% of GDP)
4) GDP (current US$)
5) Trade (% of GDP)
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Supplying five new variable names that befit the series descriptors, I now use the
second syntax of wdireshape to reshape the data. I specify nstring(4)1 to remove the
WDI missing-value symbols, the double dots (..), from the reshaped dataset. Removing
the double dots is paramount to perform numerical operations on the reshaped dataset:
Stata will regard as string data any columns containing them.

. wdireshape fdingdp fdincur fdiout gdp trade, prepend(yr) ctyname(countryname)
> sername(seriesname) sercode(seriescode) ctycode(country_code) nstring(4)

Reshaping your dataset (everything at once), please wait

Your dataset has been reshaped and is ready for panel data analysis

As output, Stata first announces that the entire dataset is being reshaped at once.
When the conversion process is complete, another message asserts that the dataset has
been reshaped and is ready for panel-data analysis, which is the default.

I use describe (see [D] describe) to get an overview of the reshaped dataset:

. describe

Contains data
obs: 5,166
vars: 9
size: 428,778 (98.0% of memory free)

storage display value
variable name type format label variable label

cid float %9.0g Country ID
countrycode str3 %9s Country code
countryname str30 %30s Country name
year int %9.0g
fdingdp double %12.0g Foreign direct investment, net

inflows (% of GDP)
fdincur double %12.0g Foreign direct investment, net

inflows (BoP, current US$)
fdiout double %12.0g Foreign direct investment, net

outflows (% of GDP)
gdp double %12.0g GDP (current US$)
trade double %12.0g Trade (% of GDP)

Sorted by: cid year
Note: dataset has changed since last saved

1. If the nstring(#) option is specified and an error occurs for any reason (e.g., invalid syntax), the
raw dataset to be reshaped needs to be reloaded before running wdireshape again. Otherwise,
Stata will abort with a type-mismatch error.
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Another look is provided by listing the first few observations:

. list countryname year fdingdp fdincur fdiout gdp trade in 1/10

countryname year fdingdp fdincur fdiout gdp trade

1. Afghanistan 1961 . . . 1.240e+09 12.55061
2. Afghanistan 1962 . . . 1.230e+09 14.22764
3. Afghanistan 1963 . . . 9.610e+08 26.03551
4. Afghanistan 1964 . . . 8.000e+08 26.94445
5. Afghanistan 1965 . . . 1.010e+09 32.67108

6. Afghanistan 1966 . . . 1.400e+09 27.14286
7. Afghanistan 1967 . . . 1.670e+09 20.98273
8. Afghanistan 1968 . . . 1.370e+09 24.11003
9. Afghanistan 1969 . . . 1.410e+09 25.07887
10. Afghanistan 1970 . . . 1.750e+09 21.72811

Panel-data analysis

I now use the Stata xtsum command to show that the data are xt ready (see [XT] xt).

. xtsum fdingdp fdincur fdiout gdp trade

Variable Mean Std. Dev. Min Max Observations

fdingdp overall 1.858811 4.390006 -82.81054 72.32173 N = 3136
between 2.099348 -.0070139 10.36776 n = 110
within 3.924819 -85.64466 69.48761 T-bar = 28.5091

fdincur overall 4.19e+08 2.61e+09 -4.55e+09 4.93e+10 N = 3642
between 1.48e+09 -4375758 1.30e+10 n = 111
within 2.15e+09 -1.26e+10 3.67e+10 T-bar = 32.8108

fdiout overall .1266303 .5728872 -7.195931 7.155485 N = 2474
between .2665292 -.0696363 2.175378 n = 114
within .4976684 -7.423015 6.91092 T-bar = 21.7018

gdp overall 2.41e+10 8.02e+10 1.16e+07 1.45e+12 N = 4171
between 5.29e+10 4.35e+07 3.64e+11 n = 121
within 5.63e+10 -2.94e+11 1.11e+12 T-bar = 34.4711

trade overall 67.14495 38.96681 1.530677 228.8752 N = 3985
between 35.73635 15.20354 163.0827 n = 121
within 17.71395 -18.7896 174.2657 T-bar = 32.9339

xtsum provides much more information than summarize. For example, the values
for n in the “Observations” column indicate the number of countries for which data are
available on each variable. Because the data are xt ready, panel-data models can be fit
using the Stata xtreg command (see [XT] xtreg).
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Time series of averages across countries

Time series of averages across countries can be obtained using the Stata collapse
command.

. collapse fdingdp fdincur fdiout gdp trade, by(year) cw // mean is the default

Now suppose that I want to graph the time series of averages for investment (net
inflows and outflows). I type the following lines of code to produce figure 1. Here I use
two y axes because the two variables are of different scales.2

. set scheme sj

. label variable fdingdp "Investment, net inflows (% of GDP)"

. label variable fdiout "investment, net outflows (% of GDP)"

. scatter fdingdp year, s(t) c(l) yaxis(1) ||
> scatter fdiout year, s(D) c(l) yaxis(2) legend(cols(1)) xlab(1970(5)2002)
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Figure 1. Time series of averages of investment (net inflows and outflows)

Country averages across years

To obtain country averages across years, I load and reshape the dataset one more time.
But this time, I elect to reshape one variable at a time by specifying the byvar option.

2. Issuing the tsline fdingdp fdiout command would do the job, but scales are not taken into
account.
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. insheet using wdi_exmpl1.csv, names clear
(46 vars, 577 obs)

. wdireshape fdingdp fdincur fdiout gdp trade, prepend(yr) ctyname(countryname)
> sername(seriesname) sercode(seriescode) ctycode(countrycode) byvar nstring(4)

Reshaping your dataset one variable at a time, please wait

Your dataset has been reshaped and is ready for panel data analysis

I now run the Stata collapse command to obtain country averages across years.

. collapse fdingdp fdincur fdiout gdp trade, by(countryname) cw

Now suppose that I want to know which countries have their annual average net
outflow investment between 0.1 and 0.5 percent, given their annual average net inflow
investment. The names of these countries are displayed in figure 2, which I obtained by
typing the following:

. label var fdingdp "Investment, net inflows (% of GDP)"

. label var fdiout "investment, net outflows (% of GDP)"

. generate pos=3

. replace pos=6 if countryname== "South Africa"
(1 real change made)

. replace pos=9 if countryname=="Niger"
(1 real change made)

. scatter fdingdp fdiout if fdiout>=.1 & fdiout<=.5, mlabel(countryname)
> xscale(log) xscale(range(.6)) mlabv(pos) yscale(range(-1))
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Figure 2. Countries with annual average net outflow investment between 0.1 and 0.5
percent of gross domestic product (GDP)

If the time period is a multiple of 5 or 10, 5-year or 10-year averages can be calculated
using the paverage command described in section 4.3. paverage is available from the
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Statistical Software Components archive. Baum (2006) also illustrates some tools for
operating on and manipulating panel data.

5.2 Example 2: Reshape five years at a time for SUR analysis

To import the data and check the number of indicators and their order of appearance,
I type

. insheet using wdi country time.csv, names clear
(50 vars, 1157 obs)

. wdireshape, sername(seriesname)

The current dataset contains 13 variables in the following order:

1) Agricultural land (% of land area)
2) Agricultural machinery, tractors per 100 sq. km of arable land
3) Fertilizer consumption (100 grams per hectare of arable land)
4) GDP (constant 2000 US$)
5) GDP (current US$)
6) GDP per capita growth (annual %)
7) Irrigated land (% of cropland)
8) Permanent cropland (% of land area)
9) Population density (people per sq. km)
10) Population growth (annual %)
11) Rural population density (rural population per sq. km of arable land)
12) Trade (% of GDP)
13) Urban population growth (annual %)

I choose to reshape the data five years at a time and invoke the sur option to request
a structure amenable to SUR analysis. Although a memory size of four megabytes is
enough to load the data, a memory error message would have occurred had I not specified
byp(5).

. wdireshape agland tractsk fertilha gdpcnst gdpcur gdppg irrigpct croplnd
> popdens popg ruraldens trade urbpg, prepend(yr) ctyname(countryname)
> sername(seriesname) sercode(seriescode) ctycode(countrycode) startyr(1961)
> endyr(2006) byper(5) sur nstring(4)

Reshaping your dataset 5 years at a time
Now reshaping period 1961 - 1965
Now reshaping period 1966 - 1970
Now reshaping period 1971 - 1975
Now reshaping period 1976 - 1980
Now reshaping period 1981 - 1985
Now reshaping period 1986 - 1990
Now reshaping period 1991 - 1995
Now reshaping period 1996 - 2000
Now reshaping period 2001 - 2006

Your dataset has been reshaped and is ready for SUREG analysis

The dataset reshaped for SUR contains 1,158 variables, because the raw dataset had
13 variables and 89 countries. As mentioned above, this structure displays the years in
rows and the variables, for each country, in columns. I now display a few observations
on the variables year and GDP per capita growth pertaining to four Latin American
(LA) countries.



40 Using WDI for statistical analysis in Stata

. list year gdppgc11 gdppgc9 gdppgc32 gdppgc60 in 1/5

year gdppgc11 gdppgc9 gdppgc32 gdppgc60

1. 1961 7.0261211 -.15207509 1.5345942 4.0316689
2. 1962 2.0897761 3.2527942 .78809956 8.1733652
3. 1963 -2.107187 4.0718175 6.630273 6.466808
4. 1964 .49288856 2.464101 1.852948 7.5981292
5. 1965 .17106316 3.2549077 1.5911081 5.5632783

As should be emphasized, the country names are concatenated to the user-supplied
variable names and are represented by c1, c2, c3, and so on. You can decipher them by
typing describe or by looking at the variable labels from the variable window if you
are using Stata 10 or higher. I now describe the variable GDP per capita growth for
the four LA countries.

. describe gdppgc11 gdppgc9 gdppgc32 gdppgc60

storage display value
variable name type format label variable label

gdppgc11 double %10.0g GDP per capita growth (annual %)
- Brazil

gdppgc9 double %10.0g GDP per capita growth (annual %)
- Bolivia

gdppgc32 double %10.0g GDP per capita growth (annual %)
- Guatemala

gdppgc60 double %10.0g GDP per capita growth (annual %)
- Nicaragua

To show that the reshaped dataset is ready for SUR analysis, I estimate four SURs,
one for each LA country. Given the data at hand, I want to investigate whether the
agricultural sector contributes to the GDP per capita growth in these countries. First, I
describe for the first country, which is Brazil, the other variables used in the analysis.
Then I estimate the regressions with the Stata sureg command. Here I specify the dfk
and corr options to request a small-sample adjustment and the Breusch–Pagan test for
independent equations.

. describe tractskc11 fertilhac11 croplndc11 popgc11

storage display value
variable name type format label variable label

tractskc11 double %10.0g Agricultural machinery, tractors
per 100 sq. km of arable land -
Brazil

fertilhac11 double %10.0g Fertilizer consumption (100 grams
per hectare of arable land) -
Brazil

croplndc11 double %10.0g Permanent cropland (% of land
area) - Brazil

popgc11 double %10.0g Population growth (annual %) -
Brazil



P. W. Jeanty 41

. foreach num of numlist 11 9 32 60 {
2. local eqn "`eqn´ (gdppgc`num´ L.gdppgc`num´ tractskc`num´ fertilhac`num´

> croplndc`num´ popgc`num´) "
3. }

. sureg `eqn´, dfk corr

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

gdppgc11 41 5 3.083649 0.4231 24.85 0.0001
gdppgc9 41 5 3.174336 0.2522 16.53 0.0055
gdppgc32 41 5 1.719363 0.5391 41.80 0.0000
gdppgc60 41 5 5.245668 0.3524 23.91 0.0002

Coef. Std. Err. z P>|z| [95% Conf. Interval]

gdppgc11
gdppgc11

L1. .2014618 .1446664 1.39 0.164 -.0820791 .4850028
tractskc11 -.0842038 .0301914 -2.79 0.005 -.1433779 -.0250297
fertilhac11 .009484 .0040085 2.37 0.018 .0016275 .0173405
croplndc11 -20.48911 10.52829 -1.95 0.052 -41.12418 .1459484

popgc11 -1.500581 2.382403 -0.63 0.529 -6.170006 3.168843
_cons 24.21315 11.5525 2.10 0.036 1.570678 46.85563

gdppgc9
gdppgc9

L1. .0428409 .1508581 0.28 0.776 -.2528357 .3385174
tractskc9 -.1529211 .1650501 -0.93 0.354 -.4764134 .1705712

fertilhac9 -.0086263 .0561642 -0.15 0.878 -.1187061 .1014536
croplndc9 78.50515 30.84602 2.55 0.011 18.04806 138.9622

popgc9 17.4214 5.810168 3.00 0.003 6.033678 28.80912
_cons -46.62524 16.28789 -2.86 0.004 -78.54892 -14.70157

gdppgc32
gdppgc32

L1. .3834769 .1242297 3.09 0.002 .1399912 .6269626
tractskc32 -.318205 .1216817 -2.62 0.009 -.5566968 -.0797131
fertilhac32 .0112325 .0029539 3.80 0.000 .005443 .017022
croplndc32 -6.652823 1.92693 -3.45 0.001 -10.42954 -2.876109

popgc32 11.52029 4.294384 2.68 0.007 3.103453 19.93713
_cons 3.227747 11.92218 0.27 0.787 -20.1393 26.59479

gdppgc60
gdppgc60

L1. -.1455299 .1551685 -0.94 0.348 -.4496546 .1585947
tractskc60 -.9258023 .2191462 -4.22 0.000 -1.355321 -.4962838
fertilhac60 .0129039 .0078384 1.65 0.100 -.0024592 .0282669
croplndc60 36.16019 12.29522 2.94 0.003 12.06201 60.25838

popgc60 7.464455 4.188569 1.78 0.075 -.7449899 15.6739
_cons -67.79043 29.24217 -2.32 0.020 -125.104 -10.47684

(Continued on next page)
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Correlation matrix of residuals:

gdppgc11 gdppgc9 gdppgc32 gdppgc60
gdppgc11 1.0000
gdppgc9 -0.3330 1.0000

gdppgc32 0.0860 -0.0576 1.0000
gdppgc60 -0.2389 0.1804 -0.2081 1.0000

Breusch-Pagan test of independence: chi2(6) = 10.436, Pr = 0.1074

As the results indicate, the null hypothesis that the coefficients in each respective re-
gression are zero is rejected at the one percent significance level. However, the Breusch–
Pagan test fails to reject at the conventional significance level the null hypothesis that
the correlation of the residuals across equations is zero.

5.3 Example 3: Reshape 10 years at a time for cross-sectional anal-
ysis

In this example, the same dataset used in example 2 is reshaped 10 years at a time. I
specify the cros option to request a structure appropriate for cross-sectional analysis.

. drop _all

. quietly set memory 2m

. insheet using wdi_country_time.csv, names
(50 vars, 1157 obs)

. wdireshape agland tractsk fertilha gdpcnst gdpcur gdppg irrigpct croplnd
> popdens popg ruraldens trade urbpg, prepend(yr) ctyname(countryname)
> sername(seriesname) sercode(seriescode) ctycode(countrycode) start(1961)
> end(2006) byp(10) cros nstring(4)

Reshaping your dataset 10 years at a time
Now reshaping period 1961 - 1970
Now reshaping period 1971 - 1980
Now reshaping period 1981 - 1990
Now reshaping period 1991 - 2000
Now reshaping period 2001 - 2006

Your dataset has been reshaped and is ready for cross sectional or change analysis

As can be seen, wdireshape accounts for the fact that the subperiod 2001–2006 is
not of 10 years. Because the raw dataset consists of 13 variables observed on a period
of 46 years, the reshaped dataset contains at least a total of 598 variables. Recall that
the cros-reshaped structure places the country names in rows and the variables, for
each year, in columns. For the years 1961 and 2006, I list a few observations on the
variables population density (popdens) and urban population growth (urbpg):
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. list countryname popdens1961 popdens2006 urbpg1961 urbpg2006 in 1/10

countryname popd~1961 popd~2006 urbpg1961 urbpg2006

1. Afghanistan 15.623018 . 5.6376534 5.2102131
2. Algeria 4.6212609 14.001507 6.4459141 2.4988708
3. Angola 4.0977862 13.147816 5.8804117 4.0143405
4. Argentina 7.6554608 14.294807 2.3680321 1.1362566
5. Bangladesh 402.52815 1108.8965 6.4879591 3.5009976

6. Barbados 538.07209 628.00706 .60466256 1.3126057
7. Belize 4.1316061 13.030856 2.8929328 2.2994995
8. Benin 21.300515 78.586803 8.3754272 3.9628651
9. Bolivia 3.1597392 8.617589 3.0227506 2.470662
10. Botswana 1.0341344 3.1018031 6.8385594 .9156059

I now describe these variables:

. describe countryname popdens1961 popdens2006 urbpg1961 urbpg2006

storage display value
variable name type format label variable label

countryname str24 %24s Country name
popdens1961 double %10.0g 1961 - Population density (people

per sq. km)
popdens2006 double %10.0g 2006 - Population density (people

per sq. km)
urbpg1961 double %10.0g 1961 - Urban population growth

(annual %)
urbpg2006 double %10.0g 2006 - Urban population growth

(annual %)

Now if I want to calculate change in population density from 1961 to 2006, I type

. generate popdens_ch = popdens2006 - popdens1961
(2 missing values generated)

In summary, wdireshape helps reduce data-management tasks when WDI users need
to

• Conduct a panel-data analysis.

Run wdireshape without specifying the sur or cros option.

• Analyze a time series of averages across countries.

First, run wdireshape, and then run the Stata collapse command by the
variable containing the years.

• Analyze a series of averages across years (pure cross-sections).

First, run wdireshape, and then run the Stata collapse command by the
variable holding the country names.
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• Analyze a series of p-year averages (with p = 2, 3, . . . , 10).

First, run wdireshape, and then run paverage, available from the Statistical
Software Components archive.

• Conduct a SUR analysis.

Run wdireshape with the sur option.

• Perform a change or cross-sectional analysis.

Run wdireshape with the cros option.

• Operate on and manipulate WDI as a panel dataset of countries.

Run wdireshape, and then apply Baum’s 2006 suggestions provided in chap-
ter 3.

6 Conclusions

In this article, I introduced a new Stata command, wdireshape, enabling Stata users to
efficiently manage WDI datasets. While allowing users to supply variable names of their
choosing for the series, wdireshape reshapes the data for panel data, SUR, or cross-
sectional modeling. In the process, the WDI series descriptors are placed into Stata
variable labels.

7 Acknowledgments

I thank Christopher Baum, the participants of the 2008 Summer North American Stata
Users Group meeting in Chicago, and an anonymous reviewer for useful comments and
suggestions. This work was partly funded by the grant “Conflict, Poverty, and Envi-
ronmental and Food Security” from the Mershon Center at The Ohio State University.
Support from the Swank Program is also greatly acknowledged.

Inspiration for the byvar option comes from Stata code posted on the web by
Kossinets (2006).

8 References
Baum, C. F. 2006. An Introduction to Modern Econometrics Using Stata. College

Station, TX: Stata Press.

Baum, C. F., and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata
Journal 7: 268–271.



P. W. Jeanty 45

Kossinets, G. 2006. Code to reshape a WDI dataset in Stata.
http://www.columbia.edu/acis/eds/data tools/tips/reshape manyvar.do.

The World Bank Group. 2009. World Development Indicators (WDI) Online.
http://publications.worldbank.org/WDI/.

About the author

P. Wilner Jeanty is a postdoctoral scholar in the Department of Agricultural, Environmental,
and Development Economics at The Ohio State University.



The Stata Journal (2010)
10, Number 1, pp. 46–60

Tabulating SPost results using estout and
esttab

Ben Jann
ETH Zürich
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Abstract. The SPost user package (Long and Freese, 2006, Regression Models
for Categorical Dependent Variables Using Stata [Stata Press]) is a suite of postes-
timation commands to compute additional tests and effects representations for a
variety of regression models. To facilitate and automate the task of tabulating
results from SPost commands for inclusion in reports, publications, and presenta-
tions, we introduce tools to integrate SPost with the estout user package (Jann,
2005, Stata Journal 5: 288–308; 2007, Stata Journal 7: 227–244). The estadd

command can retrieve results computed by the SPost commands brant, fitstat,
listcoef, mlogtest, prchange, prvalue, and asprvalue. These results can then
be tabulated by esttab or estout.

Keywords: st0183, SPost, regression table, estadd, estout, esttab, brant, fitstat,
listcoef, mlogtest, prchange, prvalue, asprvalue

1 Introduction

The detailed interpretation of regression models often requires the incorporation of
information that goes beyond the standard regression coefficients and reported tests.
For example, the interpretation of an ordered logit model might include odds ratios,
standardized odds coefficients, predicted probabilities for each outcome, and the results
of the Brant test. Similarly, the selection among a series of count models might involve
comparison of Bayesian information criterion statistics from competing models. While
official Stata and user-written commands provide tables, these tables are generic and
are rarely in the specific form an analyst wants for presentations. In this article, we
demonstrate extensions of the estout and SPost packages that allow you to use estout
and esttab to produce professional tables that combine the results from estimation and
postestimation commands.

In this article, we assume that the reader is familiar with the SPost and estout
packages. While readers who are unfamiliar with these packages should be able to
follow the examples we provide, to fully utilize these new features we suggest that you
read Jann (2005, 2007) and Long and Freese (2006). We also suggest consulting the
estout web site, http://repec.org/bocode/e/estout—which contains dozens of examples
that combine SPost commands with estout and esttab—and the SPost web site,
http://www.indiana.edu/˜jslsoc/spost.htm. For a more theoretical discussion of many
of the models and tests used, see Long (1997).

c© 2010 StataCorp LP st0183
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Our extensions to the estout and SPost packages add features that allow moving
computed results from the SPost commands brant, fitstat, listcoef, mlogtest,
prchange, prvalue, and asprvalue to estout or esttab tables. Supported regression
models include asmprobit, clogit, cloglog, cnreg, intreg, logit, mlogit, mprobit,
nbreg, ologit, oprobit, poisson, probit, regress, rologit, slogit, tobit, zinb,
zip, ztnb, and ztp, although not all commands are applicable for all models (see
Long and Freese [2006] for details on these models).1

To use the new features, you need to install the latest versions of the estout and
SPost packages. estout can be obtained from the Statistical Software Components
Archive at Boston College. Type

. ssc install estout, replace

to install the package. The SPost software is available from J. Scott Long’s web site.
To locate and install the package, type

. findit spost9_ado

and follow the prompts that you will be given. Alternatively, type

. net install spost9_ado, from(http://www.indiana.edu/~jslsoc/stata) replace

The new features are only available with SPost for Stata 9 and later (spost9 ado).
SPost for Stata 8 (spostado) is not supported.

2 Syntax and examples

The general procedure to tabulate results from an SPost command in estout or esttab
is to fit a model with a Stata regression command and then run the SPost command
to obtain additional postestimation results. estadd combines the SPost command’s
results with the model’s e() returns. After that, the results are accessible to estout
or esttab via the cells() or the stats() option, depending on whether the results
are added in a matrix or as scalars. Alternatively, the main(), aux(), and scalars()
options can be used in esttab to access the results, although cells() and stats()
are more general and flexible, albeit more complex. We begin with two examples that
illustrate the potential of combining SPost results with estout. We then provide details
on the estadd syntax for each of the supported SPost commands and provide further
examples. An extensive set of additional examples can be found at estout’s web site
(see http://repec.org/bocode/e/estout/spost.html).

As a simple example, suppose that you want to tabulate information measures com-
puted by fitstat for a linear regression model fit by regress. You could type

1. Stata 11 factor variables are not (yet) supported by the SPost commands.
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. use http://www.indiana.edu/~jslsoc/stata/spex_data/regjob3
(Long´s data on academic jobs of biochemists \ 2009-03-13)

. regress job fem phd ment fel art cit

(output omitted )

. estadd fitstat, bic
AIC: 2.580 AIC*n: 1052.793
BIC: -1371.725 BIC´: -60.162
BIC used by Stata: 1080.872 AIC used by Stata: 1052.793

added scalars:
e(aic0) = 2.5803757
e(aic_n) = 1052.7933
e(bic0) = -1371.7248
e(bic_p) = -60.162312

e(statabic) = 1080.8722
e(stataaic) = 1052.7933

. esttab, cells(none) scalars(aic0 aic_n bic0 bic_p)

(1)
job

N 408
aic0 2.580
aic_n 1052.8
bic0 -1371.7
bic_p -60.16

Notice that we used the cells(none) option to suppress the regression coefficients. To
customize the labels, you can revise the esttab command, for example, as follows:

. esttab, cells(none)
> scalars("aic0 AIC" "aic_n AIC*n" "bic0 BIC" "bic_p BIC´")

(1)
job

N 408
AIC 2.580
AIC*n 1052.8
BIC -1371.7
BIC´ -60.16

If you are working with multiple models, you can either add results to each model
individually after estimation as above or first fit and store a set of models and then
apply estadd to all of them in one call by using the colon syntax. Here is an example of
the latter, using eststo (which is also part of the estout package) to store the models:

. eststo: quietly regress job fem phd ment
(est1 stored)

. eststo: quietly regress job fem phd ment fel art cit
(est2 stored)

. estadd fitstat: * // compute fitstat for all models

. esttab, cells(none)
> scalars("n_rhs # RHS vars" "aic0 AIC" "aic_n AIC*n"
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> "bic0 BIC" "bic_p BIC´")
> nonumbers mtitles("Model 1" "Model 2")

Model 1 Model 2

N 408 408
# RHS vars 3 6
AIC 2.639 2.580
AIC*n 1076.7 1052.8
BIC -1359.9 -1371.7
BIC´ -48.30 -60.16

. eststo clear // drop the stored estimates

A difference between the two approaches is that with the first method, output from
estadd fitstat is displayed, whereas execution with the colon syntax is silent. We
turned off the model numbers in the table by using the nonumber option and added
model labels by using mtitles(). Furthermore, after using esttab to create a table for
a given set of results, you may need to clear memory of results that have been stored
so that they do not interfere with later tables. This can be done by using the eststo
clear command.

2.1 Common syntax

Common to all featured commands is the basic syntax

estadd cmd
[
. . . , replace prefix(string) quietly options

] [
: namelist

]
where cmd is the name of the SPost command in question and namelist is an optional
list of stored estimation sets to which the command will be applied. replace permits
estadd to overwrite existing e() returns, prefix() specifies a prefix for the names of
the added results, and quietly suppresses the output of the SPost command. options
are additional options specific to the SPost command. replace, prefix(), quietly,
and namelist are global options and will not be repeated in the syntax diagrams below.
Each of the supported SPost commands is now considered in alphabetical order.

2.2 estadd brant

The brant command tests the parallel regression assumption after an ordered logit or
ordered probit model (ologit or oprobit). The syntax to add results from brant is

estadd brant
[
, brant options

]
where brant options are as described in Long and Freese (2006, 452–454) or in help
brant. estadd brant adds the results of the overall test to the scalars e(brant chi2)
(value of test statistic), e(brant df) (degrees of freedom), and e(brant p) (p-value),
and adds matrix e(brant) containing χ2 statistics for the individual regressors in the
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first row and the corresponding p-values in the second row. The rows of e(brant)
can be addressed in estout’s cells() option as brant[chi2] and brant[p>chi2].
Alternatively, type brant[#], where # is the row number. For example,

. use http://www.indiana.edu/~jslsoc/stata/spex_data/ordwarm3
(GSS data on attitudes about working women for 1977 & 1989 \ 2009-03-13)

. ologit warm yr89 male white age ed prst

(output omitted )

. estadd brant, quietly

added scalars:
e(brant_chi2) = 49.181219

e(brant_df) = 12
e(brant_p) = 1.944e-06

added matrix:
e(brant) : 2 x 6 (chi2, p>chi2)

. esttab, cells("brant[chi2](fmt(1)) brant[p>chi2](fmt(3))" )
> stats(brant_chi2 brant_p, fmt(1 3) layout("@ @") label("Overall"))
> nomtitles nonumbers

chi2 p>chi2

yr89 13.0 0.001
male 22.2 0.000
white 1.3 0.531
age 7.4 0.025
ed 4.3 0.116
prst 4.3 0.115

Overall 49.2 0.000

We use the fmt(#) option to specify the number of decimal digits to report and the
label("Overall") option to set the name for the omnibus Brant test results. The
layout("@ @") option specifies that the brant chi2 and brant p statistics be placed
in the same row.

2.3 estadd fitstat

The fitstat command computes numerous measures of fit for many kinds of regression
models. The syntax to add results from fitstat is

estadd fitstat
[
, fitstat options

]
where fitstat options are as described in Long and Freese (2006, 452–454) or in help
fitstat. The list of added statistics depends on model and options. For example,
researchers frequently want to include at the base of a table the sample size along with
fit measures and statistical tests. This can be done as follows, where we also illustrate
how you can add information on the provenance of the table to the footer.

. use http://www.indiana.edu/~jslsoc/stata/spex_data/binlfp3
(Mroz´s 1976 data on labor force participation of women \ 2009-03-13)
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. logit lfp k5 k618 age wc hc lwg inc, nolog

(output omitted )

. estadd fitstat

(output omitted )

. eststo logit

. probit lfp k5 k618 age wc hc lwg inc, nolog

(output omitted )

. estadd fitstat

(output omitted )

. eststo probit

. local lrlbl "LRX2(`e(lrx2_df)´)"

. local date : di %dCY-N-D d(`c(current_date)´) // get date

. local notes addnotes("t statistics in parentheses"
> "Two-tailed tests: * p<0.05, ** p<0.01, *** p<0.001"
> "Source: bjsl04-fitstat.do `date´ Scott Long.")

. esttab,
> scalars("r2_mf R2_McFadden" "bic BIC" "lrx2 `lrlbl´" "lrx2_p Prob")
> wide mtitles title(Comparing logit and probit on lfp) nonotes `notes´

Comparing logit and probit on lfp

(1) (2)
logit probit

k5 -1.463*** (-7.43) -0.875*** (-7.70)
k618 -0.0646 (-0.95) -0.0386 (-0.95)
age -0.0629*** (-4.92) -0.0378*** (-4.97)
wc 0.807*** (3.51) 0.488*** (3.60)
hc 0.112 (0.54) 0.0572 (0.46)
lwg 0.605*** (4.01) 0.366*** (4.17)
inc -0.0344*** (-4.20) -0.0205*** (-4.30)
_cons 3.182*** (4.94) 1.918*** (5.04)

N 753 753
R2_McFadden 0.121 0.121
BIC 958.3 958.4
LRX2(7) 124.5 124.4
Prob 8.92e-24 9.47e-24

t statistics in parentheses
Two-tailed tests: * p<0.05, ** p<0.01, *** p<0.001
Source: bjsl04-fitstat.do 2009-10-14 Scott Long.

. eststo clear // drop the stored estimates

The commands

logit lfp k5 k618 age wc hc lwg inc, nolog
estadd fitstat
eststo logit

fit the logit model, compute fit statistics, and store the model estimates along with
the postestimation statistics using the reference name logit. Similarly, the following
commands do the same things for the probit model:
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probit lfp k5 k618 age wc hc lwg inc, nolog
estadd fitstat
eststo probit

To label the likelihood-ratio χ2 statistic LRX2, we want to incorporate the degrees of
freedom into the label. We do this by constructing a local with the label in which the
degrees of freedom are retrieved from the stored e(lrx2 df):

local lrlbl "LRX2(`e(lrx2_df)´)"

Within the scalars() option of esttab, "lrx2 ‘lrlbl’" indicates that the statistic
named lrx2 be given the label saved in the local lrlbl. We also want to customize the
footer of the table. To do this, we create a local notes as follows, where each line of
the footer is included in double quotes:

local date : di %dCY-N-D d(`c(current_date)´)
local notes addnotes("t statistics in parentheses" ///

"Two-tailed tests: * p<0.05, ** p<0.01, *** p<0.001" ///
"Source: bjsl04-fitstat.do `date´ Scott Long.")

Finally, in the esttab command, the nonotes option suppresses the footer that is
created by default, and our customized footer is created with the addnotes() option
contained in the local notes.

2.4 estadd listcoef

The listcoef command lists transformations of the estimated coefficients for a variety
of regression models. The syntax to add results from listcoef is

estadd listcoef
[
varlist

] [
, nosd listcoef options

]
where listcoef options are as described in Long and Freese (2006, 464–467) or in help
listcoef. Furthermore, the nosd option suppresses adding the standard deviations of
the variables in e(b sdx).

Depending on the estimation command and options, estadd listcoef adds several
vectors containing statistics such as standardized coefficients or factor change coeffi-
cients. See estadd’s online documentation for details. As a simple example, consider
tabulating standardized coefficients for a logit model:

. use http://www.indiana.edu/~jslsoc/stata/spex_data/binlfp3
(Mroz´s 1976 data on labor force participation of women \ 2009-03-13)

. logit lfp k5 k618 age wc hc lwg inc, nolog

(output omitted )

. estadd listcoef, std quietly

added matrices:
e(b_xs) : 1 x 7 (bStdX)
e(b_ys) : 1 x 7 (bStdY)
e(b_std) : 1 x 7 (bStdXY)
e(b_sdx) : 1 x 7 (SDofX)
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. estadd fitstat

(output omitted )

. local lrlbl "LRX2(`e(lrx2_df)´)"

. esttab, cells((b(lab(b-unstd) f(3)) t(lab(t-value) f(2))
> b_xs(lab(b-xstd) f(3)) b_ys(lab(b-ystd) f(3))
> b_std(lab(b-std) f(3)) b_sdx(lab(sd(x)) f(3))
> ))
> scalars("bic0 BIC" "lrx2 `lrlbl´" "lrx2_p Prob")
> nomtitles nonumbers compress
> title(Logit on lfp)

Logit on lfp

b-unstd t-value b-xstd b-ystd b-std sd(x)

k5 -1.463 -7.43 -0.767 -0.714 -0.374 0.524
k618 -0.065 -0.95 -0.085 -0.031 -0.042 1.320
age -0.063 -4.92 -0.508 -0.031 -0.248 8.073
wc 0.807 3.51 0.363 0.394 0.177 0.450
hc 0.112 0.54 0.055 0.055 0.027 0.488
lwg 0.605 4.01 0.355 0.295 0.173 0.588
inc -0.034 -4.20 -0.401 -0.017 -0.195 11.635
_cons 3.182 4.94

N 753
BIC -4029.7
LRX2(7) 124.5
Prob 8.92e-24

The f(#) option within cells() controls the number of decimal digits that are re-
ported.

As another example, consider the tabulation of results for specific contrasts in a
multinomial logit model. Use listcoef’s lt, gt, and adjacent options to determine
the contrasts for which results are to be computed. For example,

. use http://www.indiana.edu/~jslsoc/stata/spex_data/nomocc3
(GSS data on career outcomes for 1982 \ 2009-03-13)

. mlogit occ white ed exper, nolog

(output omitted )

. estadd listcoef, gt adjacent quietly

added matrices:
e(b_raw) : 1 x 12 (b)
e(b_se) : 1 x 12 (se)
e(b_z) : 1 x 12 (z)
e(b_p) : 1 x 12 (P>|z|)

e(b_fact) : 1 x 12 (e^b)
e(b_facts) : 1 x 12 (e^bStdX)

e(b_sdx) : 1 x 12 (SDofX)

(Continued on next page)
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. esttab, main(b_facts) unstack not nostar nonote modelwidth(14)

(1)
occ

BlueCol-Menial Craft-BlueCol WhiteCol-Craft Prof-WhiteCol

white 1.407 0.810 1.355 1.058
ed 0.746 1.767 2.147 3.505
exper 1.068 1.378 1.101 1.015

N 337

The raw coefficients for the requested contrasts are added in e(b raw) (along with
additional vectors containing standard errors, z statistics, and p-values).

2.5 estadd mlogtest

The mlogtest command computes various tests for multinomial logit models (mlogit).
The syntax to add results from mlogtest is

estadd mlogtest
[
varlist

] [
, mlogtest options

]
where mlogtest options are as described in Long and Freese (2006, 473–476) or in help
mlogtest. estadd mlogtest adds a variety of results depending on the specified options
(see the online documentation). For example, to compute the likelihood-ratio test that
all the coefficients associated with a given independent variable are simultaneously equal
to zero, you can use the command mlogtest, lr. To place these results in a table, type

. use http://www.indiana.edu/~jslsoc/stata/spex_data/nomocc3
(GSS data on career outcomes for 1982 \ 2009-03-13)

. mlogit occ white ed exper, nolog

(output omitted )

. estadd mlogtest, lr

**** Likelihood-ratio tests for independent variables (N=337)

Ho: All coefficients associated with given variable(s) are 0.

chi2 df P>chi2

white 8.095 4 0.088
ed 156.937 4 0.000

exper 8.561 4 0.073

added matrices:
e(lrtest) : 3 x 3 (chi2, df, p)
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. esttab, cell(( lrtest[chi2](label(LRX2))
> lrtest[df]
> lrtest[p](label(p-value))
> ))
> mlabel(none) nonumber noobs

LRX2 df p-value

white 8.095408 4 .0881451
ed 156.9372 4 6.63e-33
exper 8.560953 4 .073061

2.6 estadd prchange

The prchange command computes discrete and marginal changes in predictions for
regression models. The syntax to add results from prchange is

estadd prchange
[
varlist

] [
if
] [

in
] [

, pattern(typepattern) binary(type)

continuous(type)
[
no
]
avg split

[
(prefix)

]
prchange options

]
where prchange options are as described in Long and Freese (2006, 478–485) or in help
prchange. For example, the outcome() option may be used with models for count,
ordered, or nominal variables to request results for a specific outcome. Further options
are the following:

pattern(typepattern), binary(type), and continuous(type) determine which types of
discrete change effects are added as the main results. The default is to add the
0 to 1 change effect for binary variables and the standard deviation change effect
for continuous variables. Use binary(type) and continuous(type) to change these
defaults. Available types are

type Description
minmax minimum to maximum change effect
01 0 to 1 change effect
delta delta() change effect
sd standard deviation change effect
margefct marginal effect (only some models)

Use pattern(typepattern) if you want to determine the type of the added effects
individually for each regressor. For example, pattern(minmax sd delta) would
add minmax for the first regressor, sd for the second, and delta for the third, and
then proceed using the defaults for the remaining variables.

avg requests that only the average results over all outcomes are added if applied to
ordered or nominal models (ologit, oprobit, slogit, mlogit, and mprobit). The
default is to add the average results as well as the individual results for the different



56 SPost and estout

outcomes (unless prchange’s outcome() option is specified, in which case only results
for the indicated outcome are added). Furthermore, specify noavg to suppress the
average results and add only the outcome-specific results. avg may not be combined
with split or outcome().

split
[
(prefix)

]
saves each outcome’s results in a separate estimation set if applied to

ordered or nominal models (ologit, oprobit, slogit, mlogit, and mprobit). This
can be useful if you want to tabulate the results for the different outcomes in separate
columns beside one another. The estimation sets are named prefix#, where # is the
value of the outcome at hand. If no prefix is provided, the name of the estimation set
followed by an underscore is used as the prefix. If the estimation set has no name
(because it has not yet been stored), then the name of the estimation command
followed by an underscore is used as the prefix (e.g., ologit ). The estimation sets
stored by the split option are intended for tabulation only and should not be used
with other postestimation commands.

estadd prchange returns the discrete change effects in matrix e(dc). The first row
of the matrix contains the main results as determined by pattern(), binary(), and
continuous(). The second and following rows contain the separate results for each
type of effect, using the labels provided by prchange as row names. Type dc[#] or
dc[label] to address the rows in estout’s cells() option, where # is the row number or
label is the row name. For example, type dc[-+sd/2] to address the centered standard-
deviation change effects. To tabulate the main results (first row), simply type dc. See
the online documentation for further details on added results.

Space constraints do not permit giving detailed examples for all the variants. We
illustrate only the application of the split option with a stereotype logistic regression:

. use http://www.indiana.edu/~jslsoc/stata/spex_data/ordwarm3
(GSS data on attitudes about working women for 1977 & 1989 \ 2009-03-13)

. slogit warm yr89 male white age ed prst, nolog

(output omitted )

. estadd prchange, split quietly

added scalars:
e(predval) = .11714775
e(outcome) = 1

e(delta) = 1
e(centered) = 1

added matrices:
e(dc) : 5 x 6 (main, Min->Max, 0->1, -+1/2, -+sd/2)

e(pattern) : 1 x 6
e(X) : 4 x 6 (X, SD, Min, Max)

first row in e(dc) contains:

01 change for binary variables
sd change for continuous variables

results for outcome 1 stored as slogit_1
results for outcome 2 stored as slogit_2
results for outcome 3 stored as slogit_3
results for outcome 4 stored as slogit_4
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. esttab, main(dc 3) not nostar scalars("predval Pr(y|x)") noobs
> mtitles nonote title(Discrete changes in outcome probabilities.)
> addnotes("Note: Change from 0 to 1 for binary variable,"
> " else a standard deviation change.")

Discrete changes in outcome probabilities.

(1) (2) (3) (4)
1SD 2D 3A 4SA

yr89 -0.055 -0.081 0.058 0.078
male 0.077 0.105 -0.082 -0.100
white 0.036 0.056 -0.036 -0.055
age 0.039 0.055 -0.042 -0.052
ed -0.021 -0.030 0.022 0.028
prst -0.010 -0.014 0.011 0.013

Pr(y|x) 0.117 0.323 0.392 0.167

Note: Change from 0 to 1 for binary variable,
else a standard deviation change.

. eststo clear

2.7 estadd prvalue

The prvalue command computes model predictions at specified values of the indepen-
dent variables for regression models for categorical and count variables. The procedure
to add results from prvalue slightly differs from that for the other commands. First,
results have to be collected by repeated calls to estadd prvalue by using the syntax

estadd prvalue
[
if
] [

in
] [

, label(string) prvalue options
]

where prvalue options are as described in Long and Freese (2006, 493–497) or in help
prvalue. For example, use x() and rest() to set the values of the independent vari-
ables. Furthermore, use label() to label the single calls. pred# is used as the label if
label() is omitted, where # is the number of the call. Labels may contain spaces, but
they will be trimmed to a maximum length of 30 characters, and some special characters
(: and . and ") will be replaced by an underscore. The results from the single calls are
collected in some intermediary matrices. Specify replace to drop results from previous
calls.

Second, after collecting results, estadd prvalue post is used to post the predictions
and their standard errors (if available) in e(b) and e(se) so that they can be tabulated
(see the online help for information on additional returns). The syntax for posting the
predictions is

estadd prvalue post
[
name

] [
, title(string) swap

]
The default for estadd prvalue post is to replace the current model with the

posted results. However, if name is specified, the posted results are stored and the
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current model remains active. Use title() to specify a title for the stored results.
Use swap to determine how the results are arranged in e(b). The default is to group
predictions by outcomes (i.e., outcome labels are used as equations). However, if swap is
specified, predictions are grouped by calls (i.e., prediction labels are used as equations).

As an example, consider tabulating the predicted probabilities of labor force partic-
ipation depending on whether a woman attended college:

. use http://www.indiana.edu/~jslsoc/stata/spex_data/binlfp3
(Mroz´s 1976 data on labor force participation of women \ 2009-03-13)

. logit lfp k5 k618 age wc hc lwg inc, nolog

(output omitted )

. estadd prvalue, x(wc=1) label(Wife attended college)

(output omitted )

. estadd prvalue, x(wc=0) label(Wife did not go to college) save

(output omitted )

. estadd prvalue, x(wc=1) label(Difference) dif

(output omitted )

. estadd prvalue post

scalars:
e(N) = 753

macros:
e(depvar) : "lfp"

e(cmd) : "estadd_prvalue"
e(model) : "logit"

e(properties) : "b"

matrices:
e(b) : 1 x 6 (predictions)

e(se) : 1 x 6 (standard errors)
e(LB) : 1 x 6 (lower CI bounds)
e(UB) : 1 x 6 (upper CI bounds)

e(Category) : 1 x 6 (outcome values)
e(X) : 7 x 3 (k5, k618, age, wc, hc, lwg, inc)

. esttab, ci(3) wide nostar noobs nonumber nomtitle nonote
> varwidth(30) modelwidth(11 16) collabels("Pr(in LF)" "95% CI")
> eqlabels(none) keep(1InLF:)
> title(Change in probability if wife attends college)
> note(Note: All other variables held at their mean)

Change in probability if wife attends college

Pr(in LF) 95% CI

Wife attended college 0.710 [0.633,0.786]
Wife did not go to college 0.522 [0.473,0.570]
Difference 0.188 [0.090,0.286]

Note: All other variables held at their mean

The three prvalue commands compute predictions that are used in three rows of the
created table. Notice that the first prvalue computes the predictions with wc=1 and
the second, with wc=0, while the third prvalue computes the difference between the
two prior predictions. estadd prvalue post then saves the predictions. The esttab
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command uses options already introduced, although there are a few things to note.
varwidth() specifies the width of the left stub of the table containing the labels.
modelwidth() specifies the widths of the models’ columns.

2.8 estadd asprvalue

The asprvalue command computes predicted values for models with alternative-specific
variables. Adding results from asprvalue is analogous to adding results from prvalue.
That is, first, a series of predictions is collected by repeated calls by using the syntax

estadd asprvalue
[
if
] [

in
] [

, label(string) asprvalue options
]

where asprvalue options are as described in Long and Freese (2006, 450–452) or in help
asprvalue. Second, the collected results are posted by using the syntax

estadd asprvalue post
[
name

] [
, title(string) swap

]
See section 2.7 for details. Examples can be found on estout’s web site.

3 Conclusions

Tables are critical to effectively convey substantive results. But creating tables can be
an extremely tedious and error-prone process. The estout package makes it very simple
to construct basic tables and export them to your word processor. The enhancements
to the estout and SPost packages make it simple to create complex tables that contain
both coefficients and postestimation results. We hope that this not only makes life sim-
pler for users but also encourages researchers to create tables containing more detailed
information.
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Abstract. In this article, we describe a command, riskplot, aiming to provide a
visual aid to assess the strength, importance, and consistency of risk factor effects.
The plotted form is a dendrogram that branches out as it moves from left to
right. It displays the mean of some score or the absolute risk of some outcome
for a sample that is progressively disaggregated by a sequence of categorical risk
factors. Examples of the application of the new command are drawn from the
analysis of depression and fluid intelligence in a sample of elderly men and women.
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1 Introduction

Getting a rounded picture of the contributions of individual risk factors and their combi-
nation and interaction on the risk of some disease is not easy. While we may have moved
on from a narrow focus on significance levels to present confidence intervals for effect
estimates obtained under particular models, we rarely progress to isolate the breadth
of the sample evidence base for each effect or fully describe the likely importance of the
effect on population risk.

Pickles and colleagues (Quinton et al. 1993; Hill et al. 2001) have used manually
constructed diagrams to illustrate the impact of sequential risks and risk pathways
to study outcome. They considered the effect of a “turning point”, the gaining of a
supportive partner, on reducing the risk of antisocial behavior (Quinton et al. 1993),
and also how such supportive love relationships may be able to moderate the effects of
childhood sexual abuse on the risk of depression in adulthood (Hill et al. 2001). The
latter extended the diagram in several ways by 1) plotting estimates of risk and risk
factor prevalences that were obtained after adjustment for the sample design by the use
of weights and 2) attaching to each risk factor combination a label that can contain
additional quantitative information, such as the outcome risk under some model or the
population attributable fraction for that pathway. In this article, we describe a new
command, riskplot, that generates plots such as these in a straightforward way.

The riskplot command is not statistically sophisticated but is a visual aid intended
to give an audience access to the data to assess the strength, importance, and consistency
of risk factor effects. It displays the mean of some score or the risk of some outcome,
commonly the proportion affected, for a sample that is progressively disaggregated by a
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sequence of categorical risk factors. If the risk factors are considered in a chronological
order of exposure, then it becomes natural to think of the progressive disaggregation as
being a risk factor pathway and the plot can be used to highlight particular pathways
that are especially common or lead to unusually high or low outcome risks. As such, they
would seem a natural visual aid in the fields of development and lifecourse epidemiology,
highlighting the impact of accumulating risk factors.

2 The riskplot command

2.1 Description

The riskplot command draws a plot that shows the effect of a set of categorical risk
factors on some outcome of interest, Y . The plotted form is a dendrogram that branches
out progressively as it moves from left to right, and in which the y axis is the expected
value of the outcome and the x axis is a sequence of categorical risk factors, with the
vertical width of the branches representing the relative frequency of the risk factor
combination.

On the right-hand side next to each branch end, the user can decide to display
additional information such as the observed and expected frequencies and the “pathway
labels” (composite strings obtained by concatenating the numeric values of the risk
factor levels).

For binary risks, the plot is easily interpretable for up to three or four risk factors,
though the setting of a threshold frequency such that the rare risk combinations are
trimmed from the sample and omitted from the plot often helps. The riskplot com-
mand also offers scope for the use of color to distinguish, for example, high from low risk
pathways. This also helps highlight circumstances where interaction and moderation
take place, such that the same level of one risk factor may either increase or decrease
risk depending upon the level of a prior risk factor. The use of weights is also allowed
and permits, for example, adjustment via probability weights for stratified sampling
and attrition. However, when the computation of expected frequencies is required, only
frequency weights may be specified.

2.2 Syntax

riskplot depvar
[
xvars

] [
if
] [

in
] [

weight
] [

, all path observed expected

c(colorstyle) thick(#) trim(#) xextended(#) twoway options
]

depvar represents the outcome variable. xvars is a list of categorical risk factors whose
values must be integers between 0 and 9. No more than 20 risk-factor–level combinations
may be displayed in the same plot. Observations that have missing values for either
depvar or any of the xvars are disregarded. Weights are allowed, but when the all or
expected option is specified, only fweight may be used. The user is responsible for
ensuring the validity of what is produced when aweights or iweights are used.
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2.3 Options

all displays pathway labels as well as observed and expected frequencies and per-
centages. This is equivalent to simultaneously specifying the path, observed, and
expected options.

path displays the pathway labels at the end of each branch.

observed displays observed frequencies and percentages.

expected displays expected frequencies and percentages (i.e., frequencies and percent-
ages that we would observe if the risk factors were independent).

c(colorstyle) specifies the colors of the branches. colorstyle is a list of strings defining
the colors to be used for each level of the risk factors. The first string refers to 0s,
the second to 1s, and so on. In general, the ith string (i ≥ 1) in c( ) represents the
color for value i − 1 of the risk factors. The user may also specify a dot when the
default color (i.e., black) is required. For example,

c(red green blue blue) implies 0 = red, 1 = green, 2 = blue, 3 = blue,
others = black

c(red . blue) implies 0 = red, 1 = black, 2 = blue, others = black

c(red) implies 0 = red, others = black

thick(#) increases the line thickness of the branches. The number specified must be
between 0 and 25, where 20 is twice as thick as 10. The default is thick(10).

trim(#) prevents the display of branches with relative frequency smaller than the
percentage specified. # must be a number between 0 and 100.

xextended(#) provides additional space for labels on the right-hand side of the graph.

twoway options allow control of graph titles, legends, additional lines, text, etc.

2.4 Refining and repositioning graph labels

When using riskplot, some plotted pathways may end up being very close to each
other, and the corresponding information displayed on the right side of the graph (e.g.,
path labels and frequencies) may easily overlap. The Graph Editor allows the user to
change the appearance of the graph and, among other things, to add and move text. We
recommend using this new graphical device to solve overlapping text problems. To use
the Graph Editor, right-click on the graph and select “Start Graph Editor”. For more
details, see the Stata 11 Graphics Reference Manual (StataCorp 2009) and A Visual
Guide to Stata Graphics (Mitchell 2004).



64 riskplot

3 Examples

Here we illustrate the application of riskplot using data from the Steel-Dyne Cognitive
Ageing cohort of elderly men and women. The study was established in 1982, and it
involves the follow-up of over 6,000 normal healthy individuals aged 50 years and over
(for more details, see Rabbitt et al. [2004]). In this article, we focus on the subsample of
subjects who were assessed for depression in 1991 and in 1995. We graphically explore
the effect of a set of risk factors on cognitive decline and depression as measured in
1995 by the AH4 intelligence test (Heim 1970) and the Yesavage geriatric depression
scale test (Yesavage et al. 1982), respectively. More specifically, the AH4 test consists
of two 65-item parts and yields a total score that is used as a scale for grading fluid
intelligence, which is the ability to reason abstractly and to solve new problems. The
Yesavage geriatric depression scale test is a screening instrument of 30 items with a
yes/no format and a scale ranging between 0 (no depression) and 30 (severe depression).

The risk factors we focus on are sex (0 = male, 1 = female), social class (sclass:
0 = high, 1 = low), and depression (depr1991: 0 = no depression, 1 = mild depression,
2 = severe depression), as measured in 1991.

We start by considering a simple example (figure 1) illustrating the association of
social class and previous depression status with AH4 (fluid intelligence) in 1995.

. riskplot AH4 sclass depr1991, path ytitle(Fluid intelligence 1995)

Figure 1. Simple risk plot for assessing the impact of social class and depression in
1991 on fluid intelligence in 1995. Pathway labels are displayed by specifying the path
option.
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The labels distinguish the risk combinations; for example, “12” indicates low social
class (1) and severely depressed (2). Substantial differences in 1995 AH4 mean score are
shown for both social class and depression, the consistent effect of depression being very
apparent within each social class. We can also introduce sex as a risk factor, but here
it is better to omit the branches with low relative frequency, say, less than 5%. This
risk plot is displayed in figure 2 and is generated by the following command:

.riskplot AH4 sex sclass depr1991, path obs trim(5) ytitle(Fluid intelligence 1995)

Figure 2. Risk plot with pathway labels and observed frequencies displayed using the
path and observed options. Branches with relative frequency less than 5% are omitted
by specifying trim(5).

The plot shows that men with high social class and no depression at baseline tend
to have better fluid intelligence performances than the other subjects in the sample.

Let’s now consider the depression score in 1995 (depr1995) as the outcome of in-
terest and explore the effect of sex and social class for subjects who were found to be
depressed in 1991. Let Idep91 denote a binary variable that takes on the value 1 when
depr1991 is equal to 1 or 2, corresponding to subjects with mild (depr1991 = 1) or
severe (depr1991 = 2) depression at baseline.

A clearer picture of the effect of risk factors on the outcome of interest can be
obtained by specifying, for example, options for path colors and thickness. Observed
frequencies and those expected under independence can also be added (figure 3). The
expected option also generates some tabulated output in the standard results window.
As the length of the labels increases, it may be necessary to move the right-hand margin
of the plot with the xextended(#) option.



66 riskplot

. riskplot depr1995 sex sclass if Idep91==1, all thick(20) scale(0.9) c(. red)
> title(Risk plot for subjects with mild or severe depression at baseline,
> margin(b+5)) ytitle(depression score 1995)

Observed frequencies
--------------------

00: 48 (14.5%)
01: 23 (6.9%)
10: 175 (52.7%)
11: 86 (25.9%)

Expected frequencies
--------------------

00: 47.7 (14.4%)
01: 23.3 (7%)
10: 175.3 (52.8%)
11: 85.7 (25.8%)

11;  n = 86 (25.9%);  e = 85.7 (25.8%)

10;  n = 175 (52.7%);  e = 175.3 (52.8%)

01;  n = 23 ( 6.9%);  e = 23.3 (7%)

00;  n = 48 (14.5%);  e = 47.7 (14.4%)
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Risk plot for subjects with mild or severe depression at baseline

Figure 3. Risk plot with increased line thickness and with additional information. The
colors of the branches are specified by using the c(colorstyle) option.

As very often happens in longitudinal studies, the Steel-Dyne Cognitive Ageing co-
hort is affected by the presence of selective dropout. Sampling weights can be estimated
by modeling the probability of dropout via a logistic or probit regression and incorpo-
rated into the model to adjust for attrition.
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. riskplot depr1995 sex sclass if Idep91==1 [pw=wg], path obs thick(20) c(. red)
> title(Risk plot for subjects with mild or severe depression at baseline)
> subtitle((results using sampling weights), margin(b+5)) scale(0.9)
> ytitle(depression score 1995)

11;  n = 139.1 (26.1%)

10;  n = 275.5 (51.6%)

01;  n = 39.1 ( 7.3%)

00;  n = 80.2 (15.0%)
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(results using sampling weights)
Risk plot for subjects with mild or severe depression at baseline

Figure 4. Risk plot using probability weights to account for sample attrition.

4 Conclusion

The riskplot command described in this article is a graphical aid to the investigation
of the contributions of risk factors on outcomes of interest. In form, this plot has
much in common with dendrograms derived from cluster analysis. For each of the
risk factor combinations, it is possible to highlight differences in prevalence and to
display additional information such as labels, and observed and expected frequencies
and percentages. It might also prove useful in illustrating independence between two
variables conditional upon a third and for examining possible mediation of effects.
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Abstract. We present a new Stata estimation program, mboxcox, that computes
the normalizing scaled power transformations for a set of variables. The multivari-
ate Box–Cox method (defined in Velilla, 1993, Statistics and Probability Letters
17: 259–263; used in Weisberg, 2005, Applied Linear Regression [Wiley]) is used
to determine the transformations. We demonstrate using a generated example and
a real dataset.
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1 Theory and motivation

Box and Cox (1964) detailed normalizing transformations for univariate y and univari-
ate response regression using a likelihood approach. Velilla (1993) formalized a multi-
variate version of Box and Cox’s normalizing transformation. A slight modification of
this version is considered in Weisberg (2005), which we will use here.

The multivariate Box–Cox method uses a separate transformation parameter for
each variable. There is also no independent/dependent classification of the variables.
Since its inception, the multivariate Box–Cox transformation has been used in many
settings, most notably linear regression; see Sheather (2009) for examples. When vari-
ables are transformed to joint normality, they become approximately linearly related,
constant in conditional variance, and marginally normal in distribution. These are very
useful properties for statistical analysis.

Stata currently offers several versions of Box–Cox transformations via the boxcox
command. The multivariate options of boxcox are limited to regression settings where
at most two transformation parameters are allowed. We present the mboxcox command
as a useful complement to boxcox. We will start by explaining the formal theory of
what mboxcox does.

First, we define a scaled power transformation as

ψs (y, λ) =
(

yλ−1
λ if λ �= 0

log y if λ = 0

)

Scaled power transformations preserve the direction of associations that the trans-
formed variable had with other variables. So scaled power transformations will not
switch collinear relationships of interest.

c© 2010 StataCorp LP st0184
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Next, for n-vector x, we define the geometric mean: gm(x) = exp (1/n
∑n

i=1 log xi).

Suppose the random vector x = (x1, . . . , xp)′ takes only positive values. Let Λ =
(λ1, . . . , λp) be a vector of real numbers, such that {ψs(x1, λ1), . . . , ψs(xp, λp)} is dis-
tributed N(μ,Σ).

Now we take a random sample of size n from the population of x, yielding data
X = (x1, . . . ,xp). We define the transformed version of the variable Xij as Xij

(λj) =
ψs(Xij , λj). This yields the transformed data matrix X(Λ) =

{
x1

(λ1), . . . ,xp
(λp)
}
.

Finally, we define the normalized transformed data:

Z(Λ) =
{

gm(x1)
λ1x1

(λ1), . . . , gm(xp)
λpxp

(λp)
}

Velilla (1993, eq. 3) showed that the concentrated log likelihood of Λ in this situation
was given by

Lc(Λ) = −n
2

log

∣∣∣∣∣Z(Λ)′
(
In − 1n1

′
n

n

)
Z(Λ)

∣∣∣∣∣
Weisberg (2005) used modified scaled power transformations rather than plain scaled

power transformations for each column of the data vector.

ψm(yi, λ) = gm(y)1−λψs(yi, λ)

Under a modified scaled power transformation, the scale of the transformed variable
is invariant to the choice of transformation power. So the scale of a transformed vari-
able is better controlled under the modified scaled power transformation than under
the scaled power transformation. Inference on the optimal transformation parameters
should be similar under both scaled and modified scaled methods. The transformed
data under a scaled power transformation is equivalent to the transformed data under
an unscaled power transformation with an extra location/scale transformation. A mul-
tivariate normal random vector yields another multivariate normal random vector when
a location/scale transformation is applied to it. So the most normalizing scaled trans-
formation essentially yields as normalizing a transformation as its unscaled version. We
thus expect great similarity between the optimal scaled, modified scaled, and unscaled
parameter estimates.

The new concentrated likelihood (Weisberg 2005, 291, eq. A.36) is

Lc(Λ) = −n
2

log

∣∣∣∣∣Z∗(Λ)′
(
In − 1n1

′
n

n

)
Z∗(Λ)

∣∣∣∣∣
Here Z(Λ) has been replaced by the actual transformed data.

Z∗(Λ) =
{

gm(x1)
1−λ1x1

(λ1), . . . , gm(xp)
1−λpxp

(λp)
}
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In terms of the sample covariance of Z∗(Λ), Lc(Λ) is a simple expression. In terms
of Λ, it is very complicated. The mboxcox command uses Lc(Λ) to perform inference
on Λ, where the elements of Λ are modified scaled power transformation parameters.
Because of the complexity of Lc(Λ), a numeric optimization is used to estimate Λ. The
second derivative of Lc(Λ) is computed numerically during the optimization, and this
yields the covariance estimate of Λ.

We should take note of the situation in which the data does not support a multi-
variate Box–Cox transformation. Problems in data collection may manifest as outliers.
As Velilla (1995) states, “it is well known that the maximum likelihood estimates to
normality is very sensitive to outlying observations.” Additionally, the data or certain
variables from it could simply come from a nonnormal distribution. Unfortunately, the
method of transformation we use here is not sensitive to these problems. Our method
of Box–Cox transformation is not robust. For methods that are robust to problems like
these, see Velilla (1995) and Riani and Atkinson (2000). We present the basic multivari-
ate Box–Cox transformation here, as a starting point for more robust transformation
procedures to be added to Stata at a later date.

2 Use and a generated example

The mboxcox command has the following basic syntax:

mboxcox varlist
[
if
] [

in
] [

, level(#)
]

Like other estimation commands, the results of mboxcox can be redisplayed with the
following simpler syntax:

mboxcox
[
, level(#)

]
The syntax of mboxcox is very simple and straightforward. We also provide the

mbctrans command to create the transformed variables. This command is used to
streamline the data transformation process. It takes inputs of the variables to be trans-
formed and a list of transformation powers, and saves the transformed variables under
their original names with a t prefix. The command supports unscaled, scaled, and
modified scaled transformations. Accomplish scaled transformations by specifying the
scale option. To obtain modified scaled transformations, specify the mscale option.

mbctrans varlist
[
if
] [

in
] [

, power(numlist) mscale scale
]

We generate 10,000 samples from a three-variable multivariate normal distribution
with means (10, 14, 32) and marginal variances (1, 3, 2). The first and second variables
are correlated with a covariance of 0.3.

. set obs 10000
obs was 0, now 10000

. set seed 3000
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. matrix Means = (10,14,32)

. matrix Covariance = (1,.3,0)\(.3,3,0)\(0,0,2)

. drawnorm x1 x2 x3, means(Means) cov(Covariance)

. summarize

Variable Obs Mean Std. Dev. Min Max

x1 10000 10.00191 .9943204 5.42476 13.72735
x2 10000 13.9793 1.713186 7.683866 21.38899
x3 10000 31.98648 1.41477 26.26886 38.04641

Next we transform the data using unscaled power transformations (2,−1, 3). Note
that the correlation direction between the first and second variable changes.

. mbctrans x1 x2 x3, power(2 -1 3)

. correlate t_x1 t_x2
(obs=10000)

t_x1 t_x2

t_x1 1.0000
t_x2 -0.1585 1.0000

We will use mboxcox to determine the optimal modified scaled power transformation
estimates for normalizing the transformed data. The optimal unscaled power transfor-
mation vector is (1/2,−1, 1/3), each element being the inverse of the variable’s original
transformation power.

. mboxcox t_x1-t_x3
Multivariate boxcox transformations

Number of obs = 10000

Likelihood Ratio Tests

Test Log Likelihood Chi2 df Prob > Chi2

All powers -1 -67280.73 2078.173 3 0
All powers 0 -66461.51 439.7275 3 0
All powers 1 -66837.99 1192.704 3 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lambda
t_x1 .5318023 .0402718 13.21 0.000 .452871 .6107336
t_x2 -.9715714 .065297 -14.88 0.000 -1.099551 -.8435915
t_x3 .3647025 .0613916 5.94 0.000 .2443772 .4850278

We find that the modified scaled transformation parameter estimates of mboxcox are
close to the unscaled parameters. The postestimation features of mboxcox tell us that
there is no evidence to reject the assertion that the optimal modified scaled transforma-
tion parameters are identical to the unscaled parameters. This correspondence between
modified scaled and unscaled is not surprising, as we detailed in the last section.
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. test (t_x1= .5) (t_x2= -1) (t_x3 = 1/3)

( 1) [lambda]t_x1 = .5
( 2) [lambda]t_x2 = -1
( 3) [lambda]t_x3 = .3333333

chi2( 3) = 1.08
Prob > chi2 = 0.7831

3 Real example

Sheather (2009) provides an interesting dataset involving 2004 automobiles. We wish
to perform a regression of the variable highwaympg on the predictors enginesize,
cylinders, horsepower, weight, wheelbase, and the dummy variable hybrid.

. use cars04, clear

. summarize highwaympg enginesize cylinders horsepower weight wheelbase hybrid

Variable Obs Mean Std. Dev. Min Max

highwaympg 234 29.39744 5.372014 19 66
enginesize 234 2.899145 .925462 1.4 5.5
cylinders 234 5.517094 1.471374 3 12

horsepower 234 199.7991 64.03424 73 493
weight 234 3313.235 527.0081 1850 4474

wheelbase 234 107.1154 5.82207 93 124
hybrid 234 .0128205 .1127407 0 1

. regress highwaympg enginesize cylinders horsepower weight wheelbase hybrid

Source SS df MS Number of obs = 234
F( 6, 227) = 146.40

Model 5343.19341 6 890.532235 Prob > F = 0.0000
Residual 1380.84505 227 6.08301785 R-squared = 0.7946

Adj R-squared = 0.7892
Total 6724.03846 233 28.8585342 Root MSE = 2.4664

highwaympg Coef. Std. Err. t P>|t| [95% Conf. Interval]

enginesize .166796 .5237721 0.32 0.750 -.8652809 1.198873
cylinders -.1942966 .3171983 -0.61 0.541 -.8193262 .4307331

horsepower -.0182825 .0052342 -3.49 0.001 -.0285963 -.0079687
weight -.00662 .0007513 -8.81 0.000 -.0081003 -.0051397

wheelbase .1797597 .0570666 3.15 0.002 .0673117 .2922078
hybrid 20.33805 1.468368 13.85 0.000 17.44467 23.23142
_cons 36.05649 4.726131 7.63 0.000 26.7438 45.36919

The model is not valid. It has a number of problems. Nonconstant variance of
the errors is one. As explained in Sheather (2009), this problem can be detected by
graphing the square roots of the absolute values of the standardized residuals versus the
fitted values and continuous predictors. Trends in these plots suggest that the variance
changes at different levels of the predictors and fitted values. We graph these plots and
see a variety of increasing and decreasing trends.
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. predict rstd, rstandard

. predict fit, xb

. generate nsrstd = sqrt(abs(rstd))

. local i = 1

. foreach var of varlist fit enginesize cylinders horsepower weight wheelbase {
2. twoway scatter nsrstd `var´ || lfit nsrstd `var´,

> ytitle("|Std. Residuals|^.5") legend(off)
> ysize(5) xsize(5) name(gg`i´) nodraw

3. local i = `i´ + 1
4. }

. graph combine gg1 gg2 gg3 gg4 gg5 gg6, rows(2) ysize(10) xsize(15)

0
.5

1
1.

5
2

2.
5

|S
td

. R
es

id
ua

ls|
^.

5

20 30 40 50 60
Linear prediction

0
.5

1
1.

5
2

2.
5

|S
td

. R
es

id
ua

ls|
^.

5

1 2 3 4 5 6
EngineSize

0
.5

1
1.

5
2

2.
5

|S
td

. R
es

id
ua

ls|
^.

5

2 4 6 8 10 12
Cylinders

0
.5

1
1.

5
2

2.
5

|S
td

. R
es

id
ua

ls|
^.

5

100 200 300 400 500
Horsepower

0
.5

1
1.

5
2

2.
5

|S
td

. R
es

id
ua

ls|
^.

5

2000 2500 3000 3500 4000 4500
Weight

0
.5

1
1.

5
2

2.
5

|S
td

. R
es

id
ua

ls|
^.

5

90 100 110 120 130
WheelBase

Figure 1.
√ |Standard residuals | versus predictors and fitted values.

Data transformation would be a strategy to solve the nonconstant variance problem. As
suggested in Weisberg (2005, 156), we should first examine linear relationships among
the predictors. If they are approximately linearly related, we can use the fitted values
to find a suitable transformation for the response, perhaps through an inverse response
plot (Sheather 2009). A matrix plot of the response and predictors shows that we will
not be able to do that. Many appear to share a monotonic relationship, but it is not
linear.
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Figure 2. Matrix plot original response and predictors.
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Figure 3. Box plots original response and predictors.

In addition, a look at the box plots reveals that several of the predictors and the
response are skewed. The data are not consistent with a multivariate normal distribu-
tion. If the predictors and response were multivariate normal conditioned on the value
of hybrid, then it would follow that the errors of the regression would have constant
variance. The conditional variance of multivariate normal variables is always constant
with regard to the values of the conditioning variables.

There are actually only three observations of hybrid that are nonzero. Data anal-
ysis not shown here supports the contention that hybrid only significantly affects the
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location of the joint distribution of the remaining predictors and response. Successful
inference on other more complex properties of the joint distribution, conditional on
hybrid = 1, would require more data. Hence, we ignore the value of hybrid in cal-
culating a normalizing transformation. In the first section, we mentioned that outliers
could be a serious problem for our method. Our approach here could lead to outliers
that would cause the transformation to fail.

If the marginal transformation that we estimate is suitably equivalent to the trans-
formations obtained by conditioning on hybrid and approximately normalizes the other
predictors and the response, then the errors of the regression will be at least approxi-
mately constant and its predictors and response more symmetric.

. mboxcox enginesize cylinders horsepower highwaympg weight wheelbase
Multivariate boxcox transformations

Number of obs = 234

Likelihood Ratio Tests

Test Log Likelihood Chi2 df Prob > Chi2

All powers -1 -2431.978 202.6359 6 0
All powers 0 -2369.889 78.45681 6 7.438e-15
All powers 1 -2483.247 305.1733 6 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lambda
enginesize .2550441 .1304686 1.95 0.051 -.0006697 .5107579
cylinders -.0025143 .1745643 -0.01 0.989 -.344654 .3396255

horsepower -.0169707 .1182906 -0.14 0.886 -.2488161 .2148747
highwaympg -1.375276 .1966211 -6.99 0.000 -1.760646 -.9899057

weight 1.069233 .226236 4.73 0.000 .6258187 1.512647
wheelbase .0674801 .6685338 0.10 0.920 -1.242822 1.377782

. test (enginesize=.25)(cylinders=0)(horsepower=0)(highwaympg=-1)
> (weight=1)(wheelbase=0)

( 1) [lambda]enginesize = .25
( 2) [lambda]cylinders = 0
( 3) [lambda]horsepower = 0
( 4) [lambda]highwaympg = -1
( 5) [lambda]weight = 1
( 6) [lambda]wheelbase = 0

chi2( 6) = 3.99
Prob > chi2 = 0.6777

Following the advice of Sheather (2009), we round the suggested powers to the closest
interpretable fractions. We will use the mbctrans command to create the transformed
variables so that we can rerun our regression. We demonstrate it here for all cases
on highwaympg. The relationship it holds with the variable dealercost is used as a
reference. Recall how the unscaled transformation may switch correlation relationships
with other variables, and how the modified scaled transformation maintains these re-
lationships and the scale of the input variable. The unscaled transformed highwaympg
is referred to as unscaled hmpg. The scaled transformed version of highwaympg is
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named scaled hmpg. The modified scaled transformed version of highwaympg is named
mod scaled hmpg.

. summarize highwaympg

Variable Obs Mean Std. Dev. Min Max

highwaympg 234 29.39744 5.372014 19 66

. correlate dealercost highwaympg
(obs=234)

dealer~t highwa~g

dealercost 1.0000
highwaympg -0.5625 1.0000

. mbctrans highwaympg,power(-1)

. rename t_highwaympg unscaled_hmpg

. summarize unscaled_hmpg

Variable Obs Mean Std. Dev. Min Max

unscaled_h~g 234 .0349275 .0052762 .0151515 .0526316

. correlate dealercost unscaled_hmpg
(obs=234)

dealer~t unscal~g

dealercost 1.0000
unscaled_h~g 0.6779 1.0000

. mbctrans highwaympg,power(-1) scale

. rename t_highwaympg scaled_hmpg

. summarize scaled_hmpg

Variable Obs Mean Std. Dev. Min Max

scaled_hmpg 234 .9650725 .0052762 .9473684 .9848485

. correlate dealercost scaled_hmpg
(obs=234)

dealer~t scaled~g

dealercost 1.0000
scaled_hmpg -0.6779 1.0000

. mbctrans highwaympg,power(-1) mscale

. rename t_highwaympg mod_scaled_hmpg

. summarize mod_scaled_hmpg

Variable Obs Mean Std. Dev. Min Max

mod_scaled~g 234 810.9419 4.433584 796.0653 827.5595

. correlate dealercost mod_scaled_hmpg
(obs=234)

dealer~t mod_sc~g

dealercost 1.0000
mod_scaled~g -0.6779 1.0000
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Both the scaled and modified scaled transformation kept the same correlation rela-
tionship between highwaympg and dealercost. The unscaled transformation did not.
Additionally, the modified scaled transformation maintained a scale much closer to that
of the original than either of the other transformations. Now we will use mbctrans on
all the variables.

. mbctrans enginesize cylinders horsepower highwaympg weight wheelbase,
> power(.25 0 0 -1 1 0) mscale

The box plots for the transformed data show a definite improvement in marginal nor-
mality.
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Figure 4. Box plots transformed response and predictors.

A matrix plot of the predictors and response shows greatly improved linearity.
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Figure 5. Matrix plot transformed response and predictors.

Now we refit the model with the transformed variables.

. regress t_highwaympg t_enginesize t_cylinders t_horsepower t_weight
> t_wheelbase hybrid

Source SS df MS Number of obs = 234
F( 6, 227) = 135.72

Model 3581.57374 6 596.928957 Prob > F = 0.0000
Residual 998.430492 227 4.39837221 R-squared = 0.7820

Adj R-squared = 0.7762
Total 4580.00424 233 19.6566705 Root MSE = 2.0972

t_highwaympg Coef. Std. Err. t P>|t| [95% Conf. Interval]

t_enginesize -.406318 .4557007 -0.89 0.374 -1.304262 .4916264
t_cylinders -.5353418 .2622172 -2.04 0.042 -1.052033 -.0186507

t_horsepower -.0280757 .0051522 -5.45 0.000 -.038228 -.0179234
t_weight -.0042486 .0006911 -6.15 0.000 -.0056103 -.0028868

t_wheelbase .2456528 .0490344 5.01 0.000 .1490321 .3422736
hybrid 6.552501 1.276605 5.13 0.000 4.03699 9.068012
_cons 735.9331 23.74779 30.99 0.000 689.1388 782.7274

. predict trstd, rstandard

. predict tfit, xb

. generate tnsrstd = sqrt(abs(trstd))

. local i = 1

. foreach var of varlist tfit t_enginesize t_cylinders t_horsepower t_weight
> t_wheelbase {

2. twoway scatter tnsrstd `var´ || lfit tnsrstd `var´,
> ytitle("|Std. Residuals|^.5") legend(off) ysize(5) xsize(5) name(gg`i´)
> nodraw

3. local i = `i´ + 1
4. }

. graph combine gg1 gg2 gg3 gg4 gg5 gg6, rows(2) ysize(10) xsize(15)
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The nonconstant variance has been drastically improved. The use of mboxcox helped
improve the fit of the model.
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Figure 6.
√ |Standard residuals | versus transformed predictors and fitted values.

4 Conclusion

We explored both the theory and practice of the multivariate Box–Cox transformation.
Using both generated and real datasets, we have demonstrated the use of the multivari-
ate Box–Cox transformation in achieving multivariate normality and creating linear
relationships among variables.

We fully defined the mboxcox command as a method for performing the multivariate
Box–Cox transformation in Stata. We also introduced the mbctrans command and
defined it as a method for performing the power transformations suggested by mboxcox.
Finally, we also demonstrated the process of obtaining transformation power parameter
estimates from mboxcox and rounding them to theoretically appropriate values.
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Abstract. Availability of large, multilevel longitudinal databases in various fields
including labor economics (with workers and firms observed over time) and ed-
ucation research (with students and teachers observed over time) has increased
the application of panel-data models with multiple levels of fixed-effects. Existing
software routines for fitting fixed-effects models were not designed for applications
in which the primary interest is obtaining estimates of any of the fixed-effects
parameters. Such routines typically report estimates of fixed effects relative to
arbitrary holdout units. Contrasts to holdout units are not ideal in cases where
the fixed-effects parameters are of interest because they can change capriciously,
they do not correspond to the structural parameters that are typically of inter-
est, and they are inappropriate for empirical Bayes (shrinkage) estimation. We
develop an improved parameterization of fixed-effects models using sum-to-zero
constraints that provides estimates of fixed effects relative to mean effects within
well-defined reference groups (e.g., all firms of a given type or all teachers of a
given grade) and provides standard errors for those estimates that are appropriate
for shrinkage estimation. We implement our parameterization in a Stata routine
called felsdvregdm by modifying the felsdvreg routine designed for fitting high-
dimensional fixed-effects models. We demonstrate our routine with an example
dataset from the Florida Education Data Warehouse.

Keywords: st0185, felsdvreg, felsdvregdm, fixed effects, linked employer–employee
data, longitudinal achievement data

1 Introduction
The implementation of models that include a large number of fixed effects for indi-
vidual units, such as employers and employees or teachers and students, has grown
with the increased availability of large longitudinal datasets.1 This is especially evident

1. Units do not need to be synonymous with physical units. A unit could be a firm or teacher during a
period of time (e.g., year) or could be a subset of its function (e.g., a firm’s manufacturing division
versus its research division or a teacher’s first period versus his second period class) so that the
same physical entity could be associated with multiple units. The example in section 4 defines
units as teacher-years so that teachers can be associated with multiple units.

c© 2010 StataCorp LP st0185
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in the context of employer–employee linked data (Abowd, Kramarz, and Roux 2006;
Menezes-Filho, Muendler, and Ramey 2008) and student–teacher linked data (Aaron-
son, Barrow, and Sander 2007; Clotfelter, Ladd, and Vigdor 2006; Harris and Sass 2006;
McCaffrey, Han, and Lockwood 2008; Rockoff 2004). It is usually not possible to esti-
mate all the models’ parameters because inclusion of a fixed effect for every individual
unit generally makes the model overparameterized because of linear dependence among
the independent variables in the model (e.g., the indicator or “dummy” variables for
the individual units). Consequently, estimation requires identifying assumptions and
reparameterization of the model. In cases where the fixed effects are used to control for
unobserved heterogeneity of units (e.g., workers, firms, students, teachers) and interest
lies in the estimation of the effects of other time-varying covariates (e.g., exposure to
policies or programs), then the reparameterization is irrelevant because parameters and
their estimates for time-varying covariates are invariant to different parameterizations
of the fixed effects. In fact, when the model contains only one level of fixed effects, it
is typically not explicitly included as regressors but rather is “absorbed” out prior to
regression through the within-subjects transformation (Greene 2008; Wooldridge 2002).
This is how several commonly used packages such as areg, xtreg, fe, and SAS R© PROC

GLM (SAS Institute, Inc. 2004) implement single-level fixed-effects estimation. Even if
multiple levels of fixed effects are in the model, if the effects at all levels are nuisances,
then the absorption can be applied with “spell” fixed effects that allow one effect for each
unique combination of the multiple levels of indicators (e.g., each unique worker–firm
combination) (Andrews, Schank, and Upward 2006).

However, there are some applications where the fixed effects are of direct interest,
either by themselves or in conjunction with the effects of time-varying covariates. This
is particularly true in education research, where there is growing interest in using large,
longitudinal achievement databases with students linked to teachers and schools to esti-
mate the effects of individual teachers on student achievement (Goldhaber and Hansen
2008; Harris and Sass 2006, 2007; Kane, Rockoff, and Staiger 2006; McCaffrey et al.
2004; McCaffrey et al. 2009) and increasing calls to use such estimates for high-stakes
purposes such as pay or tenure decisions (Gordon, Kane, and Staiger 2006). Simi-
larly, in labor economics, there is interest in estimating the effects of individual firms
(Abowd, Creecy, and Kramarz 2002; Abowd, Kramarz, and Margolis 1999).

In cases where estimates of unit fixed effects are of interest, the parameterization
matters and it is essential for the analyst to be able to control it. However, software for
modeling with fixed effects (e.g., areg, xtreg, fe, or SAS R© PROC GLM) all solve the
problem of overparameterization by deleting the indicator variables for one or more units
until the remaining variables are linearly independent. Although this parameterization
suffices in allowing for estimation of the remaining model parameters, it changes the
definition of the fixed-effects parameters for indicator variables to be contrasts between
the units that were not deleted and the arbitrary holdout unit or units whose indicators
were deleted.

Comparison to a holdout unit results in estimates that are not invariant to the cho-
sen holdout unit, and estimates can change as a result of immaterial changes to the
data, such as the labeling or ordering of units. In more complex settings and in models
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where more than one indicator variable must be deleted to solve the overparameteri-
zation of fixed effects, it can be difficult to determine the specific interpretation of the
reported contrasts. This situation is unacceptable in cases where obtaining estimates
of the fixed-effects parameters is a primary objective. In addition, estimation of con-
trasts to arbitrary holdout units can result in instability of estimates across time or
other settings due to differences in the holdouts. The problems of interpretation and
instability potentially can be overcome by using linear combinations of model param-
eters to estimate individual units’ contributions (e.g., combining the intercept and the
individual-unit fixed effects to estimate the unit-specific mean, or post hoc mean, cen-
tering the estimated effects to estimate the effect of the unit relative to the average
unit); however, the standard errors of such combinations are not easily obtained with
available software.

Hence, there is a need for software that estimates the fixed effects using a param-
eterization that is interpretable, not capricious, and that provides standard errors for
these estimates. A parameterization meeting these criteria is one in which effects for
individual units are defined as deviations from the average unit or the average units
within specified reference groups. These contrasts more directly correspond to the pa-
rameters of structural (causal) models; for example, in education settings, the notion of
an “effective teacher” is a teacher whose students perform better with that teacher than
they would with the average teacher in the population. These estimates are obtained
by enforcing sum-to-zero constraints among the fixed effects in the model.

Users could code independent variables to correspond to the sum-to-zero parameter-
ization and then include these as variables in standard linear model software. However,
coding the independent variables is tedious, especially if multiple constraints are neces-
sary to remove overparameterization. In addition, when there are many units or there
are two levels of fixed effects (e.g., firms and workers or teachers and students), creating
the complete matrix of independent variables can be computationally burdensome or
infeasible.

To address the need for software designed to estimate fixed effects when they are of
interest, we introduce the felsdvregdm command, which automatically parameterizes
the fixed effects using sum-to-zero constraints. The command allows the user to define
the collection of units to be compared (called “reference collections”) and calculates the
sum-to-zero parameterization so that the fixed-effects parameters are deviations from
the reference collection means. For example, in the education setting, it is possible to
calculate teacher fixed effects that are deviations from the average teacher in the school,
the average teacher in the grade across schools, or any other grouping of teachers of
interest to researchers. The program works with a single level of fixed effects (firms or
teachers) and with two levels of effects (workers and firms or students and teachers).
The program builds on the efficient computational methods of felsdvreg (Cornelissen
2008), which allow it to handle datasets with a large number of units and individuals.

felsdvregdm complements several commands that already exist in Stata to handle
fixed effects. For a model with one level of fixed effects, felsdvregdm produces esti-
mates and inferences for effects of time-varying covariates that are identical to areg,
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xtreg, or fese (Nichols 2008). All four of these procedures will produce the same over-
all model fit and residual error because the alternative parameterizations of fixed effects
do not affect the overall model fit. The only difference in the results from felsdvregdm
and the other procedures is the estimates of the fixed-effects parameters and their stan-
dard errors. Similarly, for a model with two levels of fixed effects, the estimates and
inferences for time-varying covariates and model fit from felsdvregdm are identical to
those produced by felsdvreg, a2reg (based on Abowd, Creecy, and Kramarz [2002]) or
gpreg (based on Guimarães and Portugal [2009]), with differences only in the estimates
of the unit fixed-effects parameters and their standard errors.2 In neither case does the
fixed-effects parameterization used by felsdvregdm add any additional constraints to
the model.

In this article, felsdvregdm is introduced and implemented in an example dataset
from the Florida Education Data Warehouse in the context of educational achievement
of students linked to teachers.

2 Sum-to-zero constraints

2.1 One level of fixed effects

We roughly follow the notation established by Cornelissen (2008). The basic model with
a single level of fixed effects assumes that the outcome for a “person” i with time-varying
covariates xit associated with “unit” j at time t is given by

yit = x
′
itβ + ψj(i,t) + εit

where εit is a mean zero error term and there is a separate factor ψj for each unit, with
the index j(i, t) indicating the unit j to which person i is linked at time t. The funda-
mental problem with this model is that without additional assumptions, the average of
the ψj cannot be distinguished from the average person outcome, or more generally, the
model with separate factors for every unit is overparameterized and model parameters
cannot be estimated uniquely.

The model for the outcomes from a typical sample of panel data from N persons,
with a total of N∗ person-time observations is given by

Y = Xβ + Fψ + ε (1)

where F is an N∗ × J incidence matrix consisting of only zeros and ones and satisfying
F1J = 1N∗ where 1k is a k-vector of ones. That is, each observation is linked to
exactly one of the J units. X is N∗ ×K containing time-varying covariates, as well as
time effects or an overall intercept. Overparameterization is then characterized by the

2. The two-level model can also be fit via areg by explicitly including indicator variables for the unit
fixed effects via the xi command. This will yield the same estimates of time-varying covariates and
model fit as felsdvregdm, but it will not match the estimates for the fixed effects because the xi

command automatically deletes dummy variables to identify the model. Using areg for two-level
models will not be feasible when there are large numbers of units because of memory constraints
and Stata’s 11,000-variable matrix size limit.
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matrix (X,F ) being less than full column rank. Under the assumptions about F , this
will always be true when X contains either an intercept or separate means for every
time point, because in either case it is possible to recover 1N∗ as a linear combination
of columns of X or columns of F separately, and thus the columns of (X,F ) are
not linearly independent. As noted previously, the most common approach to this
overparameterization is to remove as many columns of F as there are linear constraints
among the columns of (X,F ).3 In the simplest case, rank{(X,F )} = rank(X)+J −1;
that is, the introduction of F results in only one linear dependency. For instance,
there is one linear dependency when X consists of only the intercept or includes only
indicators for time-point means.

Our solution to the problem is to replace F with an N∗ × (J − 1) matrix F ∗ with
associated parameter vector ψ∗. F ∗ is obtained by dropping an arbitrary column j of
F and setting all rows of F ∗ corresponding to observations linked to unit j to a vector
of negative ones. That is, we define the effect of unit j to be 1−∑i=1,...,J;i�=j ψi so that
ψ∗ contains J − 1 free parameters rather than J free parameters because the elements
of ψ∗ sum to zero. Unlike the default holdout parameterization, these contrasts and
their estimates are invariant to which unit-j column is eliminated from F , and without
loss of generality, we eliminate the first column of F .4 In this case, we can express
F ∗ = FC, where C is the J × (J − 1) matrix (−1, I)T (Venables and Ripley 2001).

More generally, analysts may be interested in controlling for differences among col-
lections of firms or teachers. For example, firms may have classification factors such as
size or sector that the analysts want to remove from the individual unit effects. In ed-
ucation applications, partitioning of teachers into comparison groups is commonplace.
For datasets following a single cohort of students across grades, it is typical to com-
pare teachers of the same grade or same group of grades (i.e., elementary versus middle
grades). In more complex datasets, where multiple cohorts of students are followed and
teachers are observed for multiple years across different cohorts, it may be desirable to
estimate separate teacher-year effects for each teacher and to compare teachers within
the same year and perhaps the same grade or grade range within year (McCaffrey et al.
2009).

In the context of estimating firm or teacher effects, controlling for a classification
variable creates additional redundant parameters and requires additional constraints on
the unit-effect parameters for identification. We cannot distinguish average performance
for units in a group from the effects of being in the group. One approach that yields
interpretable estimates for the firms and teachers is to parameterize the model so that
units are compared within groups defined by the classification variables but not across
those groups. In general, establishing the comparison groups is an analyst decision that
depends on the substantive application.

3. Sometimes, depending on the specific routine and the order in which regressors are specified,
elements of X rather than F may be dropped. This is equally problematic even though no elements
of F are dropped because the estimates of the fixed effects contain the omitted intercept or time
effect(s) and are thus still subject to arbitrary choices made by the regression routine.

4. This parameterization is invariant to the number of units, J , and is equally effective on a small or
large scale.
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We refer to such comparison groups as “reference collections” to avoid confusion
with the “groups” described by Cornelissen (2008). Cornelissen’s groups are relevant in
models with two levels of fixed effects and are discussed in the next section. Specifically,
we define reference collections as any partitioning of the J units into G mutually ex-
clusive and exhaustive categories, and we parameterize the effects within each of these
g = 1, . . . , G categories with sum-to-zero constrained effects. Thus there are J − G
parameters for the effects of the J units. If the columns of F are sorted by refer-
ence collection, then the N∗ × (J − G) design matrix for the fixed effects is given by
F ∗ = F (⊕Cg) where Cg is the matrix C defined previously, restricted to reference
collection g.

We would expect that analysts would almost always include reference collection
means in the model, because the motivation for creating a reference collection will
typically be to control for mean differences between those collections. However, some
analysts might not follow this convention; in those cases, to ensure that our parame-
terization has the correct interpretation, we add those means to the model. We let G
be the N∗ × G incidence matrix such that GGI = 1 if the unit to which person-time
observation i is linked is in reference collection g and GGI = 0 otherwise. The columns
of G correspond to the reference collection means and the column space of (F ∗,G) is
identical to F . We define X∗ = (X,G) with parameter β∗, and as discussed in more
detail later in the article, our routine uses X∗ rather than the user-supplied X to en-
sure that our parameterization of unit fixed effects introduces no other changes to the
model.5 The resulting equation estimated in the case of one-level fixed effects is given
by

Y = X∗β∗ + F ∗ψ∗ + ε

2.2 Two levels of fixed effects

We extend (1) to include person-level fixed effects using the following model:

Y = Xβ + Fψ +Dθ + ε (2)

where D is an N∗ ×N matrix of person (e.g., worker or student) fixed effects. Unlike
the unit effects, in the vast majority of applications, these fixed effects are nuisance
parameters used to control for person-level heterogeneity when estimating unit effects
or the effects of time-varying covariates. felsdvregdm can implement both this two-
level fixed-effects model or the one-level model (1). When fitting the two-level model,
person-level fixed effects are treated as nuisance parameters and are absorbed using the
within transformation (Cornelissen 2008).

The essential logic of our approach to parameterizing the unit effects is unchanged by
the use of (2) and the within transformation to remove the person fixed effects. However,
the elements of X∗ and F ∗ reflect the within transformation. The transformed version
of (2) after the reparameterization can be written as

5. If any of the columns G are in the column space of X, they are deleted from the model during
estimation.
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Ỹ = X̃
∗
β∗ + F̃

∗
ψ∗ + ε̃

The ∼ reflects the within-person transformed data in which the person mean has been
removed from each observation and which leads to the D matrix becoming the null
matrix. X̃

∗
= (X̃, G̃) is an N∗ × (K + G) matrix that includes the time-varying

covariates and the reference collection indicators after the within transformation, and
F̃

∗
is the design matrix for the unit fixed effects after the sum-to-zero reparameterization

and within-person transformation.

Often the inclusion of the person fixed effects results in no additional lost degrees
of freedom beyond those already discussed and so no additional considerations are nec-
essary. However, there are certain cases in which additional degrees of freedom may
be lost. These are cases in which multiple disconnected “groups” or “strata” exist in
the data (Abowd, Creecy, and Kramarz 2002; Cornelissen 2008; McCaffrey et al. 2009).
Groups or strata are subgroups of units and persons that are disconnected from other
subgroups in the sense that no person from that subgroup is ever linked to units out-
side the subgroup, and the units in the subgroup only ever link to persons within the
subgroup. The simplest example can occur in education data: if students and teach-
ers never switched schools, then each school and the students attending it would be
disconnected groups.

In two-level models, groups must be considered when defining reference collections
because they create additional linear dependencies among the columns of D and F . If
centering within a particular reference collection is desired but that reference collection
spans two or more disconnected groups, sum-to-zero constraints within the reference
collection would fail to identify the model parameters in the context of (2). This is
because comparisons of units that are in the same reference collection but in different
groups conflate differences between the groups with differences between the units. One
remedy for this issue is to redefine the reference collections by intersecting them with
group, i.e., splitting any reference collections that spanned groups into separate reference
collections by group. Other alternatives might also be possible. The key is that for
each reference collection, all the units must belong entirely to one and only one group,
although groups can include multiple reference collections. The appropriate solution
will depend on the substantive goals of the analysis. We discuss how felsdvregdm
deals with the relationship between groups and reference collections for the two-level
model in section 3.3, and we give an example of modeling with reference collections and
groups in section 4.

An extreme case of grouping occasionally occurs in which a group contains a sin-
gle firm (teacher) because every worker employed by the firm (student taught by the
teacher) is linked only to this firm (teacher). Cornelissen (2008), refers to these persons
(workers or students) associated with a single unit as “nonmovers” because they do not
move across the units but stay at the same one. These nonmovers can occur in any
group and do not contribute to the estimation of the unit effects in the two-level model.
However, when the data for a unit comes only from nonmovers (i.e., the unit creates a
single unit group), then the unit effect cannot be estimated in the two-level model. The
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unit fixed effect is excluded from the model. The persons are included in the estimation
with their fixed effects and can contribute to the estimation of the coefficients for the
time-varying covariates.

3 Implementation of felsdvregdm

3.1 Syntax

felsdvregdm varlist
[
if
] [

in
]
, ivar(varname) jvar(varname) reff(varname)

peff(name) feff(name) xb(name) res(name) mover(name) mnum(name)

pobs(name) group(name)
[
grouponly onelevel noisily cholsolve

nocompress feffse(name)
]

3.2 Options

ivar(varname) specifies the identification variable for the person-level effect, such as
the person or student ID. ivar() is required.

jvar(varname) specifies the identification variable for the unit-level effect, such as the
firm or teacher ID. jvar() is required.

reff(varname) specifies the identification variable for the reference collection. Refer-
ence collections specify collections of units to be compared with the unit mean for
the collection. For two-level fixed-effects applications, reference collections must be
nested within groupings or strata of connected units. reff() is required.

peff(name) specifies the name of the new variable in which to store the person-level
effect.6 peff() is required.

feff(name) specifies the name of the new variable in which to store the unit effect.7

feff() is required.

xb(name) specifies the name of the new variable in which to store the linear prediction
X′b. xb() is required.

res(name) specifies the name of the new variable in which to store the residual. res()
is required.

mover(name) specifies the name of the new variable in which to store an indicator
variable for whether the person is observed with multiple firms or teachers. mover()
is required.

mnum(name) specifies the name of the new variable in which to store the number of
movers per unit. In the two-level model, units for which mnum() is zero do not have
identified effects. mnum() is required.

6. This is referred to as the first effect in the felsdvreg documentation.
7. This is referred to as the second effect in the felsdvreg documentation.
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pobs(name) specifies the name of the new variable in which to store the number of
observations per person. Persons for whom only one observation is available will
have person effects computed with a residual of zero for the two-level model. pobs()
is required.

group(name) specifies the name of the variable in which to store the group (strata)
identifier calculated during the routine. If the variable does not already exist in the
data, it will be created; if there is an existing variable name, it will be overwritten.
group() is required.

grouponly causes felsdvregdm to run only the grouping algorithm and produce group
indicator variables. No estimates are computed in this case.

onelevel omits the person fixed effects, resulting in the one-level fixed-effects model
being fit.

noisily provides more detailed outputs with tables and summary statistics on the
number of movers, units, and persons, and the mobility variable.

cholsolve directs Stata to use the cholsolve() function to invert the moment matrix
instead of using the default invsym() function. This may result in greater internal
precision.

nocompress specifies not to compress the dataset; by default, the compress command
is implemented to save memory.

feffse(name) specifies the name of the new variable in which to store the standard
errors of the estimated unit fixed effects.

3.3 Remarks

Because felsdvregdm extends the functionality of felsdvreg and uses syntax and its
estimation methods as its base, the procedures for the two commands are very similar.
In particular, felsdvregdm requires the same specification of person-related variables
as felsdvreg. This is true for both one- and two-level applications, even though in
principle, several variables might only apply to models with two levels of fixed effects
(e.g., ivar(), peff(), mover() and pobs()). All variables are required regardless of
whether one or two levels are specified because the computational methods developed
in felsdvreg and used by felsdvregdm rely on both the unit and person levels of
indicators to save time and memory during estimation. Also consistent with felsdvreg,
when specifying the grouponly option, all the variable names need to be defined even
though only the group() variable will be modified and saved.

Although the syntax of felsdvregdm and felsdvreg are very similar, there are
several important differences to note between the procedures:

• The reff() option, which is not part of felsdvreg, is required by felsdvregdm.
This variable specifies the reference collections inside which the user wishes to
impose sum-to-zero constraints among the unit effects.
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As noted in the previous section, maintaining correspondence between the models
in the original parameterization and our sum-to-zero constrained parameterization
requires that G, or something equivalent to it (in the sense of having identical
column space), be included in the model. We encourage users to create indicator
variables corresponding to the levels of the reff(varname) variable and to include
these as regressors in the model, if they are not already part of the model. For
example, in the setting where teachers of the same grade are being compared in the
reference collections, the explanatory variables should contain dummy variables
for each of the grades. In the case of a single reference collection, where all of the
units are being compared to one another, the regression should include a constant
term. If the user-specified explanatory variables do not span G, felsdvregdm will
add variables corresponding to G to the explanatory variable list as well as to the
dataset after estimation, where they are labeled as Dvarname 1, . . . , Dvarname G,
where varname is the name of the reff() variable in the function call.8

• Similarly to felsdvreg, felsdvregdm checks for collinearity among the columns of
X∗, the matrix of explanatory variables (augmented byG, if necessary), and drops
redundant variables if any exist. That is, X∗ (or X̃

∗
in the two-level model) is

restricted to a set of its linearly independent columns. felsdvregdm further checks
that the columns (X∗,F ∗) [or (X̃

∗
, F̃

∗
)] are all linearly independent and aborts

estimation with an error message if they are not because any collinearity among
the columns would prevent the unambiguous interpretation of the fixed-effects
estimates, defeating the purpose of our reparameterization.

• Like felsdvreg, felsdvregdm fits a two-level model, but unlike felsdvreg, it also
provides the option of fitting a one-level fixed-effects model with the sum-to-zero
constraint using the onelevel option.

• For the two-level model, felsdvregdm runs a grouping algorithm prior to estima-
tion to determine groups, stores the results in the group() variable, and checks
that no reference collection is ever associated with more than one group. If this
test fails, the program aborts and returns an error message, because in this case,
the sum-to-zero constraints within reference collection are insufficient to identify
all the model parameters. In practice, we suggest that prior to attempting to fit a
two-level model, users call felsdvregdm with the grouponly option. In addition,
users should use the group information stored in the group() variable to check
that reference collections do not contain multiple groups and as necessary rede-
fine reference collections to be within group boundaries and remain substantively
meaningful.

• Many options that were available in felsdvreg can no longer be implemented.
Because automatic selection of parameterizations might not coincide with the
substantive interests of users, the takegroup option of felsdvreg has been elimi-

8. On occasion, the user-specified G will be replaced with variables that are equivalent to it. Stata
developers are working to fix this inconsistency.
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nated. Similarly, because the matrix of explanatory variables is augmented by G,
the reference collection fixed-effects matrix, the cons option is no longer possible.

• The F tests conducted by felsdvregdm are different from those conducted by
felsdvreg. In particular, in felsdvregdm we made the decision to test the unit
effects only within reference collections rather than testing the unit effects along
with the reference collection means. That is, if there are G reference collections
and J total unit effects, we include the G reference collection means in the re-
duced model and test the significance of the remaining J−G centered unit effects.
This choice was consistent with the notion that a user may choose a particular
set of reference collections because between-collections variability may not be at-
tributable to units. For example, it is common to compare teachers within grades,
because test scores may vary across grades due to scaling of tests, which users
generally would not want to include as part of the teacher effects.

For both the one-level and two-level models, felsdvregdm uses a model that
includes X for the first set of F tests and X∗ = (X,G) for the second set of F
tests as the reduced model.9 For the one-level model, it tests the joint significance
of the within-collection unit effects relative to the reduced model. For the two-
level model, it reports three tests: the joint significance of the person and unit
effects relative to the reduced model, the significance of the unit effects conditional
on the person effects and the covariates, and the significance of the person effects
conditional on the unit effects and the covariates.

• The normalize option in felsdvreg normalizes the group means of the unit effects
to zero. This normalization is equivalent to the case in felsdvregdm if all the
observations are specified to be in a single reference collection. However, in many
situations, the user may wish to compare smaller collections of units, in which
case felsdvregdm is more desirable. In addition, the normalize option does not
adjust the standard errors for the normalization and continues to report standard
errors that are relative to an arbitrary holdout teacher. For more information on
the impact of using an arbitrary holdout teacher to calculate standard errors, see
the discussion surrounding table 1 in section 4.1.

• Forthcoming in later versions of felsdvregdm are the robust and
cluster(varname) options, which compute robust and clustered standard errors;
the noadji and noadjj options, which adjust the degrees of freedom for the
clustered standard errors; and the hat(varlist) and orig(varlist) options, which
allow for two-stage least-squares estimation.

4 Example

We illustrate the use of felsdvregdm with an example of longitudinally linked student–
teacher data from the Florida Education Data Warehouse. The data consist of a single

9. For the two-level model, time-invariant person covariates that were included among the list of
independent variables are not included in the reduced model.
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cohort of 9,283 students from an anonymous district followed from grades 4 to 8. In
each grade, the students are linked to their mathematics teachers, and there are a total
of 1,360 unique teacher-year units in the dataset.10 For the purposes of the example, we
focus on estimating separate effects for each teacher for each school year. Any teacher
who teaches students from the cohort in multiple years through changes in teaching
assignment across years will have a distinct effect for each year they teach the cohort;
hence, our units in this study are teacher-years rather than individual teachers. To
simplify our presentation, we refer to our estimated effects as teacher effects although
they are more precisely teacher-year effects for the small number of teachers who teach
the cohort in multiple years. Because the data include only one cohort of students,
there is an exact mapping of the grade level of the cohort and year. Teacher effects
from any given year correspond to effects of all the teachers instructing the students in
mathematics during one grade level. For instance, the year one teacher effects are the
effects of the fourth grade mathematics teachers for the cohort, and the year two effects
are the effects of the fifth grade mathematics teachers, and so on.

The outcome variable of interest is nrtgain, measured at each grade and equal to
the student’s gain (current year scale score minus prior year scale score) on a statewide
mathematics exam. The data also include five time-invariant student-level indicators
of basic demographics: female, white, black, asian, and hispanic. Finally, the data
include the time-varying student-level covariate nonstrucmove indicating whether the
student made a school move between years that was not also undertaken by a significant
proportion of his prior-year schoolmates (i.e., not due to matriculation from elementary
to middle school). This variable proxies for student family mobility that may be related
to achievement.

In this section, we demonstrate the use of felsdvregdm to fit two different types
of models for student mathematics achievement gains as a function of teacher and
student inputs: a one-level fixed-effects model with teacher fixed effects and both time-
invariant and time-varying student covariates, and a two-level model with both teacher
and student fixed effects as well as the time-varying student covariate. For the one-level
model, we show how inferences about the relationships of the student covariates to the
outcome obtained by felsdvregdm are identical to those reported by areg. For the
two-level model, we compare felsdvregdm to felsdvreg, showing that the estimates
of covariates are identical but that the teacher effects from felsdvregdm have better
properties. We also demonstrate how the issue of disconnected groups needs to be
addressed in felsdvregdm.

Student gains can differ by grade in part because of the structure of the tests and
general trends in student learning. We want to control for these grade-level differences
in our model and avoid conflating them with our teacher effects. Consequently, for both
the one-level and the two-level models, we include grade means in the model and we
define reference collections for the teacher fixed effects at the level of individual grades;
i.e., grade 4 teachers are one reference collection, grade 5 teachers are another, etc.,

10. We combined students from six teachers into two “teachers” to collapse three single-student strata
into one stratum to improve the exposition of the example.
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for a total of five reference collections. There are 412, 399, 178, 197, and 177 teachers
in grades 4 through 8, respectively, with the smaller numbers in grades 6 through 8
reflecting the period structure of middle schools in which there are fewer teachers and
more students per teacher. As noted above, because grades map uniquely to years and
there is a distinct teacher effect for every teacher-year unit, reference collections defined
by grades fully partition our teacher effects into disjoint sets. If we were interested in
estimating a single effect for every teacher that is constant across years for teachers who
teach the cohort in multiple years or grades, then reference collections defined by grade
would not properly partition teachers and an alternative definition would be required.

4.1 One level of fixed effects

The model used in this example regresses gains in students’ mathematics achievement,
nrtgain, on teacher fixed effects and all student-level covariates. This is an instance
of (1) with Y being the vector of annual mathematics gain scores, X including grade
means and all student-level variables, and F representing the teacher effects.

This model is fit using felsdvregdm as follows:

. felsdvregdm nrtgain female white black asian hispanic nonstrucmove grade4
> grade5 grade6 grade7 grade8, ivar(student) jvar(teachergrd) reff(gradelvl)
> feff(teachfe_dm) peff(stufe_dm) feffse(teachse_dm) mover(mover) group(group)
> xb(xb) res(resid) mnum(mnum) pobs(pobs) onelevel

Memory requirement for moment matrices in GB:
.01502616

Computing generalized inverse, dimension: 1365
Start: 9 Dec 2009 10:15:40
End: 9 Dec 2009 10:15:46

N=34326

Coef. Std. Err. t P>|t| [95% Conf. Interval]

female .3093813 .2556106 1.21 0.226 -.1916247 .8103874
white -.0732443 .8370731 -0.09 0.930 -1.713938 1.567449
black .2331433 .8516812 0.27 0.784 -1.436182 1.902469
asian 3.080624 1.082118 2.85 0.004 .9596337 5.201615

hispanic 1.448387 1.031368 1.40 0.160 -.5731313 3.469905
nonstrucmove .0243751 .3639665 0.07 0.947 -.6890122 .7377625

grade4 18.43987 .8813575 20.92 0.000 16.71238 20.16736
grade5 20.66716 .8959979 23.07 0.000 18.91097 22.42335
grade6 11.972 1.242489 9.64 0.000 9.536679 14.40733
grade7 15.04787 1.232244 12.21 0.000 12.63263 17.46312
grade8 19.07987 1.260358 15.14 0.000 16.60953 21.55022

F-test that firm effects are equal to zero: F(1354,32961)=2.558 Prob > F = .0031
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The student identifiers are passed using ivar(), and the teacher identifiers are passed
using jvar().11 The reference collection is denoted by gradelvl, which takes on values
of 4 through 8 and is specified in reff(). The felsdvregdm call includes indicator
variables corresponding to each grade level in the list of explanatory variables. The
remaining options denote variables created to store the teacher and student fixed effects,
the standard errors, and other variables of interest, similar to felsdvreg. The onelevel
option was included to fit the one-level model that does not include student fixed effects.
As discussed previously, if the reference collection indicator variables had not been
included in the explanatory variable list, felsdvregdm would have added them and
provided a message noting this addition and the names of the added variables. The
fitted model would be identical to the one above in all other respects.

We find that student covariates generally are not related to student gains in mathe-
matics achievement; only the asian variable is significant, but there are large differences
in grade-level means. Comparing teachers across grade levels could conflate test differ-
ences and other factors with teacher effects. Hence, we need to compare teachers within
grade level, as was accomplished via our choice of reference collection. The significant
value for the F test indicates that within grade levels, there are meaningful differences
among teachers, which is consistent with literature on teacher effects.

The Stata areg command is a commonly used alternative to felsdvregdm with
the onelevel option for fitting the one-level (1). For example, areg nrtgain female
white black asian hispanic nonstrucmove grade4 grade5 grade6 grade7
grade8, absorb(teachergrd) is an alternative command for fitting the model above.
The predict postestimation command with the d or xbd option will recover the teacher
effects without standard errors. Another alternative for the one-level model is the fese
command, which provides estimates for both the teacher effects and the standard errors
(Nichols 2008).12

felsdvregdm and areg (or fese) produce similar results but with some subtle, im-
portant differences. Both models produce the same estimates and standard errors for the
student-level variables (female, white, black, asian, hispanic, and nonstrucmove)
and both models give the same overall model fit, test for the overall model, residuals,
and root mean squared error. However, because the grade indicators (grade4–grade8)
are collinear with the absorbed teacher effects, areg drops these variables from the
model and makes them part of the estimated teacher effects. In particular, predict’s
d option yields teacher-effect estimates that equal the mean for each teacher, adjusted
for the student-level covariates, less the grand mean adjusted for student-level covari-
ates. predict’s xbd option yields teacher-effect estimates that equal the mean for each
teacher, adjusted for the student-level covariates. The estimates make no adjustment

11. Even though this model contains one level of fixed effects, both the ivar() and the jvar() vari-
ables need to be specified. This is because even with one fixed-effects model, the memory saving
computation of the fixed-effects parameters in felsdvregdm is possible by taking advantage of the
panel structure of the dataset.

12. Similarly, xtreg, fe could be used to estimate the coefficients on the time-varying and time-
invariant variables and has options to recover the teacher effects with the predict postestimation
command using the u or xbu option. Again, xtreg does not provide the control over that parame-
terization that felsdvregdm offers, and standard errors are difficult to estimate in this case.
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for the grade-level means and are not parameterized to sum to zero overall or within
grade level. As a result, the teacher-effect estimates produced by areg with predict’s
d option differ from the estimates from felsdvregdm within each grade level by a con-
stant equal to the adjusted mean of the outcome variables for the entire sample minus
the grade-level mean of the adjusted teacher means (table 1). fese produces the same
estimates as areg with predict’s xbd option, and both are estimates of the teacher
means assuming the grade-level means and the overall mean are part of the parameter
of interest. These are unbiased estimates of the means given the model, but they may
not truly be the parameters of interest and would be inappropriate for empirical Bayes
(shrinkage) estimation.

Table 1. Mean differences in teacher fixed-effects estimates, by reference collection,
produced by areg and felsdvreg.

Grade Difference

4 −1.966
5 −4.193
6 4.502
7 1.426
8 −2.606

Whether the grade-level means should be part of the teacher effects cannot be de-
termined by the data and must be determined by the user. felsdvregdm provides users
with the option of treating the grade-level mean differences as an external source of
error and estimating the teacher effects relative to the mean of their grade-level peers.
areg and fese provide the alternative approach. It would be possible to post hoc center
the estimate from areg or fese by grade level, but the standard errors would not be
provided as they are with felsdvregdm.

4.2 Two levels of fixed effects

The model used in this example regresses gains in students’ mathematics achievement,
nrtgain, on teacher fixed effects, student fixed effects, and the time-varying student
covariate nonstrucmove. Compared with the previous example, this model uses fixed
effects for each individual student rather than time-invariant student covariates, to
control for student heterogeneity. This is an instance of (2). Because the model includes
two levels of fixed effects, we compare felsdvregdm with felsdvreg rather than areg.

As discussed previously, issues of grouping must be considered in the two-level model.
Because of felsdvregdm’s goal to maintain strict control over the interpretation of
the unit fixed effects, reference collections must not attempt to compare teachers in
disconnected strata. To check the grouping structure, we first run felsdvregdm with
the grouponly option:
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. felsdvregdm nrtgain nonstrucmove grade4 grade5 grade6 grade7 grade8,
> ivar(student) jvar(teachergrd) reff(gradelvl) feff(teachfe) peff(stufe)
> feffse(teachse) mover(mover) group(groupout) xb(xb) res(resid) mnum(mnum)
> pobs(pobs) grouponly
Note: You specified ´grouponly´. Only the group variable was modified and saved.

No estimates were produced.

Groups of firms connected by worker mobility:

Person-years Persons Movers Firms

groupout N(__000000) N(__000009) sum(__00000D) N(__000008)

1 34,320 9,280 9280 1,357
2 6 3 3 2

Total 34,326 9,283 9283 1,359

The results of the grouping algorithm are stored in groupout. These data contain
two groups: one with the vast majority of the observations and one with three students
and two teachers. Given the groups and the reference collections, we modify the ref-
erence collections to have the five grade-specific collections in the large group and one
collection for both teachers in the small group.

The output below shows the composition of the six reference groups and the results
from fitting the model using felsdvregdm with the new reference collections:

. egen newreff = group(gradelvl) if groupout==1
(6 missing values generated)

. replace newreff = 6 if groupout==2
(6 real changes made)

. preserve

. collapse groupout (sum) freq, by(newreff gradelvl)

. order newreff

. list, noobs

newreff gradelvl groupout freq

1 4 1 6940
2 5 1 7622
3 6 1 6991
4 7 1 6894
5 8 1 5873

6 7 2 3
6 8 2 3

. restore

. quietly xi i.newreff, noomit
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. felsdvregdm nrtgain nonstrucmove female white black asian hispanic
> _Inewreff_1 _Inewreff_2 _Inewreff_3 _Inewreff_4 _Inewreff_5 _Inewreff_6,
> ivar(student) jvar(teachergrd) reff(newreff) feff(teachfe) peff(stufe)
> feffse(teachse) mover(mover) group(groupout) xb(xb) res(resid) mnum(mnum)
> pobs(pobs)
The group variable (called groupout) that exists in the dataset will be replaced!
note: _Inewreff_6 dropped because of collinearity

Some variables were added or dropped from the independent variables
Reference collection fixed effects may not be sufficiently defined,
Variables could be collinear due to multiple groups in the dataset,
Or some variables may be collinear with the second level of fixed effects
The following variable(s) were added to the explanatory variables

The following variable(s) were ignored or dropped from the explanatory
variables
Dnewreff_6 Dnewreff_5 Dnewreff_4 Dnewreff_3 Dnewreff_2 Dnewreff_1 _Inewreff_5

> hispanic asian black white female

Memory requirement for moment matrices in GB:
.01489488

Computing generalized inverse, dimension: 1358
Start: 9 Dec 2009 10:16:18
End: 9 Dec 2009 10:16:24

N=34326

Coef. Std. Err. t P>|t| [95% Conf. Interval]

nonstrucmove .346897 .4944743 0.70 0.483 -.6223043 1.316098
_Inewreff_1 -.0394583 1.46098 -0.03 0.978 -2.903073 2.824156
_Inewreff_2 2.52157 1.498037 1.68 0.092 -.4146783 5.457819
_Inewreff_3 -6.279251 1.882227 -3.34 0.001 -9.968537 -2.589965
_Inewreff_4 -4.169235 1.853738 -2.25 0.025 -7.80268 -.5357898

F-test that person and firm effects are zero: F(10635,23685)=.601 Prob > F =.7295
F-test that person effects are equal to zero: F(9281,23685)=.38 Prob > F = 1
F-test that firm effects are equal to zero: F(1353,23685)=2.196 Prob > F = 0

In general, in a two-level model, one reference-collection indicator will be dropped
per group because of collinearity between the set of student fixed effects for students
in each group and the set of reference collection means in each group (both sets add to
an indicator for the group). In this example, the indicator for reference collection 6 is
dropped for the small group and the indicator for reference collection 5 is dropped for
the large group. However, the teacher effects are identified in both of the groups.

The crucial difference between felsdvregdm and other fixed-effects routines is in
the estimated teacher effects. To demonstrate this, we calculated the mean estimated
teacher effect, as well as the mean standard error of these estimates, by reference col-
lection for both felsdvregdm and felsdvreg. We did this for two different datasets:
the one used in the example reported above, in which the teacher with the lowest ID

number has a large positive effect and many linked students, and an alternative version
in which the teacher ID numbers were deliberately changed so that the teacher with the
lowest ID number has a large negative effect and few linked students. These purposeful
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manipulations of the teacher ID numbers are designed to demonstrate the impacts on
both the estimates and their standard errors of changing the holdout teacher used by
felsdvreg. The results are given in table 2.

Table 2. Mean estimated teacher effects by reference collection, with mean standard
errors of these estimates by reference collection in parentheses. The number following
the procedure name refers to the dataset used for estimation, where only the holdout
teacher identifier was changed.

Reff Coll felsdvregdm 1 felsdvregdm 2 felsdvreg 1 felsdvreg 2

1 0.000 (8.216) 0.000 (8.216) −41.844 (11.926) 74.502 (37.146)
2 0.000 (8.649) 0.000 (8.649) −39.283 (12.447) 77.063 (37.499)
3 0.000 (13.716) 0.000 (13.716) −48.084 (17.222) 68.262 (40.058)
4 0.000 (14.703) 0.000 (14.703) −45.974 (18.092) 70.372 (40.615)
5 0.000 (13.697) 0.000 (13.697) −41.805 (17.198) 74.542 (40.065)
6 0.000 (10.385) 0.000 (10.385) −13.667 (20.770) −13.667 (20.770)

As intended, the mean teacher effect by reference collection for felsdvregdm is zero,
regardless of how the teacher identifiers are labeled. For felsdvreg, the mean teacher
effect is strongly negative for each reference collection in the first dataset, where the
holdout teacher was above average, and strongly positive in the second dataset, where
the holdout teacher was well below average. The estimated teacher effects from the two
routines are perfectly correlated within reference collection (not shown); however, the
parameterization used by felsdvregdm removes the instability caused by changing the
holdout. An additional difference is that the fixed effect is not estimated for the holdout
teacher in felsdvreg, and the standard error for this teacher is missing. felsdvregdm
reports fixed effects and standard errors for all the teachers.

Because the teacher effects estimated by felsdvregdm are invariant to the labeling
of teacher identifiers, the standard errors for those effects reported by felsdvregdm
are also invariant to the labeling of the teacher identifiers. The standard errors of the
effects reported by felsdvreg vary dramatically depending on the holdout teacher,
with the average standard errors for the second dataset being much larger because the
holdout teacher had very few students. Both sets of standard errors are larger than
those reported by felsdvregdm because they are for contrasts of each teacher relative
to the holdout instead of relative to the group mean, the former being a less precise
comparison.

It would be easy to recover the desired mean-centered teacher effects reported by
felsdvreg by post hoc centering; however, the standard errors of those contrasts can-
not easily be obtained because they are a function of the full design matrix and not
simple functions of the standard errors reported by felsdvreg. Having the appro-
priate standard errors is essential to many post hoc inferences about teachers made
from the model. For example, in education applications, it is commonly of interest
to estimate whether each teacher’s effect is statistically significantly different from its
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reference collection mean. These hypothesis tests are a straightforward function of
the estimates and standard errors provided by felsdvregdm but are not easily con-
ducted with the output from felsdvreg. In addition, it is often of interest to use the
estimates and standard errors to estimate the true between-teacher variability in ef-
fectiveness within reference groups and then subsequently use this estimated variance
to conduct empirical Bayes (shrinkage) estimators (Boyd et al. 2008; Koedel and Betts
2005; Jacob and Lefgren 2008; McCaffrey, Han, and Lockwood 2008). A simple method
of moments estimator of this variance component is obtained by subtracting the average
squared standard error of the estimates from the sample variance of estimates. For ex-
ample, the average method of moments estimate of the between-teachers variance across
reference collections obtained by the felsdvregdm output is 0.03, which is roughly con-
sistent with values commonly reported in the teacher effectiveness literature.13 Applying
the same computations to the two different felsdvreg specifications yields infeasible
values of −0.02 and −0.78, since the sample variance of the estimated effects is bi-
ased because of the correlation resulting from contrasting every estimated effect to the
same holdout. Therefore, estimates and standard errors provided by felsdvregdm are
appropriate for these computations, but those provided by felsdvreg are not.

5 Conclusion

As linked longitudinal datasets from various fields become more available, the desire to
analyze these data to estimate the effects of individual units is poised to increase. These
models can be computationally challenging, particularly when multiple levels of fixed
effects are specified, and existing software routines for dealing with these challenges are
generally not designed to provide estimates that are useful for inferences about individ-
ual fixed effects. Arbitrary decisions about how to deal with the lack of full identification
of the fixed effects is at odds with the desire for unambiguous inferences about those
effects. Sum-to-zero constrained effects within reference collections as implemented in
felsdvregdm is an intuitive way for analysts to specifically control the parameteriza-
tion of fixed effects when those effects are of interest and should prove valuable in many
applications.

Although we implemented sum-to-zero constrained effects within reference collec-
tions in the context of longitudinal data, the logic of the parameterization applies to
other types of models and data structures that are not addressed by felsdvregdm.
For example, in education research, some analysts fit models where current year test
scores or gain scores are modeled as a function of current teacher indicators and other
student-level covariates such as demographic variables and prior test scores (McCaf-
frey, Han, and Lockwood 2008; Rothstein 2007). That is, rather than treating the
data as panel data with the sequence of outcomes all being on the left-hand side of the
model equation, these models fit the regression of the current outcome on past out-

13. Let bφgi and segi equal the estimated effect and standard error of that effect for teacher i = 1, . . . , Ng

of grade g = 4, . . . , 8. The method of moment estimator for the between-teachers variance for

teachers in grade g is vg =
P

i(
bφgi − bφg.)

2/(Ng − 1) − P
i se2

gi/Ng , where bφg. equals the average
of the estimates for grade g. We report the average of vg across grade levels.
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comes and other predictors. Our parameterization is equally desirable to this type of
model, but felsdvregdm is designed for data with separate records for each person and
time point rather than for data with one record per person and observations from prior
time points included as additional fields instead of additional records. Future work to
implement sum-to-zero constrained effects within reference collections in the context
of cross-sectional models or other applications with similar data structures would be
valuable.
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Abstract. The development and use of synthetic regression models has proven
to assist statisticians in better understanding bias in data, as well as how to best
interpret various statistics associated with a modeling situation. In this article, I
present code that can be easily amended for the creation of synthetic binomial,
count, and categorical response models. Parameters may be assigned to any num-
ber of predictors (which are shown as continuous, binary, or categorical), negative
binomial heterogeneity parameters may be assigned, and the number of levels or
cut points and values may be specified for ordered and unordered categorical re-
sponse models. I also demonstrate how to introduce an offset into synthetic data
and how to test synthetic models using Monte Carlo simulation. Finally, I intro-
duce code for constructing a synthetic NB2-logit hurdle model.

Keywords: st0186, synthetic, pseudorandom, Monte Carlo, simulation, logistic,
probit, Poisson, NB1, NB2, NB-C, hurdle, offset, ordered, multinomial

1 Introduction

Statisticians use synthetic datasets to evaluate the appropriateness of fit statistics and
to determine the effect of modeling after making specific alterations to the data. Models
based on synthetically created datasets have proved to be extremely useful in this respect
and appear to be used with increasing frequency in texts on statistical modeling.

In this article, I demonstrate how to construct synthetic datasets that are appropri-
ate for various popular discrete-response regression models. The same methods may be
used to create data specific to a wide variety of alternative models. In particular, I show
how to create synthetic datasets for given types of binomial, Poisson, negative binomial,
proportional odds, multinomial, and hurdle models using Stata’s pseudorandom-number
generators. I demonstrate standard models, models with an offset, and models having
user-defined binary, factor, or nonrandom continuous predictors. Typically, synthetic
models have predictors with values distributed as pseudorandom uniform or pseudoran-
dom normal. This will be our paradigm case, but synthetic datasets do not have to be
established in such a manner—as I demonstrate.

In 1995, Walter Linde-Zwirble and I developed several pseudorandom-number gen-
erators using Stata’s programming language (Hilbe and Linde-Zwirble 1995, 1998), in-
cluding the binomial, Poisson, negative binomial, gamma, inverse Gaussian, beta bino-
mial, and others. Based on the rejection method, random numbers that were based on

c© 2010 StataCorp LP st0186
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distributions belonging to the one-parameter exponential family of distributions could
rather easily be manipulated to generate full synthetic datasets. A synthetic binomial
dataset could be created, for example, having randomly generated predictors with cor-
responding user-specified parameters and denominators. One could also specify whether
the data was to be logit, probit, or any other appropriate binomial link function.

Stata’s pseudorandom-number generators are not only based on a different method
from those used in the earlier rnd* suite of generators but also, in general, use different
parameters. The examples in this article all rely on the new Stata functions and are
therefore unlike model creation using the older programs. This is particularly the case
for the negative binomial.

I divide this article into four sections. First, I discuss creation of synthetic count
response models—specifically, Poisson, log-linked negative binomial (NB2), linear nega-
tive binomial (NB1), and canonical negative binomial (NB-C) models. Second, I develop
code for binomial models, which include both Bernoulli or binary models and binomial
or grouped logit and probit models. Because the logic of creating and extending such
models was developed in the preceding section on count models, I do not spend much
time explaining how these models work. The third section provides a relatively brief
overview of creating synthetic proportional slopes models, including the proportional
odds model, and code for constructing synthetic categorical response models, e.g., the
multinomial logit. Finally, I present code on how to develop synthetic hurdle models,
which are examples of two-part models having binary and count components. Statis-
ticians should find it relatively easy to adjust the code that is provided to construct
synthetic data and models for other discrete-response regression models.

2 Synthetic count models

I first create a simple Poisson model because Stata’s rpoisson() function is similar to
my original rndpoi (used to create a single vector of Poisson-distributed numbers with
a specified mean) and rndpoix (used to create a Poisson dataset) commands. Uniform
random variates work as well as and at times superior to random normal variates for the
creation of continuous predictors, which are used to create many of the models below.
The mean of the resultant fitted value will be lower using the uniform distribution, but
the model results are nevertheless identical.

(Continued on next page)
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* SYNTHETIC POISSON DATA
* [With predictors x1 and x2, having respective parameters of 0.75 and -1.25
* and an intercept of 2]
* poi_rng.do 22Jan2009
clear
set obs 50000
set seed 4744
generate x1 = invnormal(runiform()) // normally distributed: values between

// ~ -4.5 - 4.5
generate x2 = invnormal(runiform()) // normally distributed: values between

// ~ -4.5 - 4.5
generate xb = 2 + 0.75*x1 - 1.25*x2 // linear predictor; define parameters
generate exb = exp(xb) // inverse link; define Poisson mean
generate py = rpoisson(exb) // generate random Poisson variate with mean=exb
glm py x1 x2, nolog family(poi) // model resultant data

The model output is given as

. glm py x1 x2, nolog family(poi)

Generalized linear models No. of obs = 50000
Optimization : ML Residual df = 49997

Scale parameter = 1
Deviance = 52295.46204 (1/df) Deviance = 1.045972
Pearson = 50078.33993 (1/df) Pearson = 1.001627

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 4.783693
Log likelihood = -119589.3262 BIC = -488661

OIM
py Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7488765 .0009798 764.35 0.000 .7469562 .7507967
x2 -1.246898 .0009878 -1262.27 0.000 -1.248834 -1.244962

_cons 2.002672 .0017386 1151.91 0.000 1.999265 2.00608

Notice that the parameter estimates approximate the user-defined values. If we
delete the seed line, add code to store each parameter estimate, and convert the do-file
to an r-class ado-file, it is possible to perform a Monte Carlo simulation of the synthetic
model parameters. The above synthetic Poisson data and model code may be amended
to do a simple Monte Carlo simulation as follows:
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* MONTE CARLO SIMULATION OF SYNTHETIC POISSON DATA
* 9Feb2009
program poi_sim, rclass

version 11
drop _all
set obs 50000
generate x1 = invnormal(runiform())
generate x2 = invnormal(runiform())
generate xb = 2 + 0.75*x1 - 1.25*x2
generate exb = exp(xb)
generate py = rpoisson(exb)
glm py x1 x2, nolog family(poi)
return scalar sx1 = _b[x1]
return scalar sx2 = _b[x2]
return scalar sc = _b[_cons]

end

The model parameter estimates are stored in sx1, sx2, and sc. The following simple
simulate command is used for a Monte Carlo simulation involving 100 repetitions. Es-
sentially, what we are doing is performing 100 runs of the poi rng do-file, and averaging
the values of the three resultant parameter estimates.

. simulate mx1=r(sx1) mx2=r(sx2) mcon=r(sc), reps(100): poi_sim

(output omitted )

. summarize

Variable Obs Mean Std. Dev. Min Max

mx1 100 .7499039 .000987 .7473155 .7524396
mx2 100 -1.250145 .0009411 -1.25298 -1.248092

mcon 100 1.9999 .0015481 1.995079 2.003942

Using a greater number of repetitions will result in mean values closer to the user-
specified values of 0.75, −1.25, and 2. Standard errors may also be included in the
above simulation, as well as values of the Pearson-dispersion statistic, which will have
a value of 1.0 when the model is Poisson. The value of the heterogeneity parameter,
alpha, may also be simulated for negative binomial models. In fact, any statistic that
is stored as a return code may be simulated, as well as any other statistic for which we
provide the appropriate storage code.

It should be noted that the Pearson-dispersion statistic displayed in the model output
for the generated synthetic Poisson data is 1.001627. This value indicates a Poisson
model with no extra dispersion; that is, the model is Poisson. Values of the Pearson
dispersion greater than 1.0 indicate possible overdispersion in a Poisson model. See
Hilbe (2007) for a discussion of count model overdispersion and Hilbe (2009) for a
comprehensive discussion of binomial extradisperson. A good overview of overdispersion
may also be found in Hardin and Hilbe (2007).

Most synthetic models use either pseudorandom uniform or normal variates for pre-
dictors. However, it is possible to create both random and fixed-level categorical pre-
dictors as well. Next I create a three-level predictor and a binary predictor to build the
synthetic model. I create the categorical variables by using the irecode() function,
with specified percentages indicated. x1 is partitioned into three levels: x1 1 consists
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of the first 50% of the data (or approximately 25,000 observations). x1 2 has another
30% of the data (approximately 15,000 observations), and x1 3 has the final 10% of
the data (approximately 10,000 observations). x1 1 is the referent. x2 is binary with
approximately 30,000 zeros and 20,000 ones. The user-defined parameters are x1 2 = 2,
x1 3 = 3, and x2 = −2.5. The intercept is specified as 1.

* SYNTHETIC POISSON DATA
* poif_rng.do 6Feb2009
* x1_2=2, x1_3=3, x2=-2.5, _cons=1
clear
set obs 50000
set seed 4744
generate x1 = irecode(runiform(), 0, 0.5, 0.8, 1)
generate x2 = irecode(runiform(), 0.6, 1)
tabulate x1, gen(x1_)
generate xb = 1 + 2*x1_2 + 3*x1_3 - 2.5*x2
generate exb = exp(xb)
generate py = rpoisson(exb)
glm py x1_2 x1_3 x2, nolog family(poi)

The model output is given as

. glm py x1_2 x1_3 x2, nolog family(poi)

Generalized linear models No. of obs = 50000
Optimization : ML Residual df = 49996

Scale parameter = 1
Deviance = 50391.75682 (1/df) Deviance = 1.007916
Pearson = 50115.71287 (1/df) Pearson = 1.002394

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 3.959801
Log likelihood = -98991.02229 BIC = -490553.9

OIM
py Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1_2 1.995445 .0053683 371.71 0.000 1.984923 2.005966
x1_3 2.996465 .0051336 583.70 0.000 2.986404 3.006527

x2 -2.490218 .0059027 -421.88 0.000 -2.501787 -2.478649
_cons 1.00166 .0048605 206.08 0.000 .9921333 1.011186

We can obtain exact numbers of observations for each level by using the inrange()
function. Using the same framework as above, we can amend x1 to have exactly 25,000,
15,000, and 10,000 observations in the factored levels by using the following example
code:

generate x1 = _n
replace x1 = inrange(_n, 1, 25000)*1 + inrange(_n, 25001, 40000)*2 + //

inrange(_n, 40001, 50000)*3
tabulate x1, gen(x1_)
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The tabulation output is given as

. tabulate x1, gen(x1_)

x1 Freq. Percent Cum.

1 25,000 50.00 50.00
2 15,000 30.00 80.00
3 10,000 20.00 100.00

Total 50,000 100.00

Poisson models are commonly parameterized as rate models. As such, they use
an offset, which reflects the area or time over which the count response is generated.
Because the natural log is the canonical link of the Poisson model, the offset must be
logged prior to entry into the estimating algorithm.

A synthetic offset may be randomly generated or may be specified by the user. For
this example, I will create an area offset having increasing values of 100 for each 10,000
observations in the 50,000-observation dataset. The shortcut code used to create this
variable is given below. I have commented code that can be used to generate the same
offset as in the single-line command that is used in this algorithm. The commented
code better shows what is being done and can be used by those who are uncomfortable
using the shortcut.

* SYNTHETIC RATE POISSON DATA
* poio_rng.do 22Jan2009
clear
set obs 50000
set seed 4744
generate off = 100 + 100*int((_n-1)/10000) // creation of offset

* generate off = 100 in 1/10000 // These lines duplicate the single line above
* replace off = 200 in 10001/20000
* replace off = 300 in 20001/30000
* replace off = 400 in 30001/40000
* replace off = 500 in 40001/50000

generate loff = ln(off) // log offset prior to entry into model
generate x1 = invnormal(runiform())
generate x2 = invnormal(runiform())
generate xb = 2 + 0.75*x1 - 1.25*x2 + loff // offset added to linear predictor
generate exb = exp(xb)
generate py = rpoisson(exb)
glm py x1 x2, nolog family(poi) offset(loff) // added offset option

We expect that the resultant model will have approximately the same parameter
values as the earlier model but with different standard errors. Modeling the data without
using the offset option results in similar parameter estimates to those produced when
an offset is used, with the exception that the estimated intercept is highly inflated.

(Continued on next page)
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The results of the rate-parameterized Poisson algorithm above are displayed below:

. glm py x1 x2, nolog family(poi) offset(loff)

Generalized linear models No. of obs = 50000
Optimization : ML Residual df = 49997

Scale parameter = 1
Deviance = 49847.73593 (1/df) Deviance = .9970145
Pearson = 49835.24046 (1/df) Pearson = .9967646

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 10.39765
Log likelihood = -259938.1809 BIC = -491108.7

OIM
py Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7500656 .0000562 1.3e+04 0.000 .7499555 .7501758
x2 -1.250067 .0000576 -2.2e+04 0.000 -1.25018 -1.249954

_cons 1.999832 .0001009 2.0e+04 0.000 1.999635 2.00003
loff (offset)

I mentioned earlier that a Poisson model having a Pearson dispersion greater than 1.0
indicates possible overdispersion. The NB2 model is commonly used in such situations
to accommodate the extra dispersion.

The NB2 parameterization of the negative binomial can be generated as a Poisson-
gamma mixture model, with a gamma scale parameter of 1. We use this method to
create synthetic NB2 data. The negative binomial random-number generator in Stata
is not parameterized as NB2 but rather derives directly from the NB-C model (see Hilbe
[2007]). rnbinomial() may be used to create a synthetic NB-C model, but not NB2 or
NB1. Below is code that can be used to construct NB2 model data. The same parameters
are used here as for the above Poisson models.

* SYNTHETIC NEGATIVE BINOMIAL (NB2) DATA
* nb2_rng.do 22Jan2009
clear
set obs 50000
set seed 8444
generate x1 = invnormal(runiform())
generate x2 = invnormal(runiform())
generate xb = 2 + 0.75*x1 - 1.25*x2 // same linear predictor as Poisson above
generate a = .5 // value of alpha, the NB2 heterogeneity

parameter
generate ia = 1/a // inverse alpha
generate exb = exp(xb) // NB2 mean
generate xg = rgamma(ia, a) // generate random gamma variate given alpha
generate xbg = exb*xg // gamma variate parameterized by linear

predictor
generate nby = rpoisson(xbg) // generate mixture of gamma and Poisson
glm nby x1 x2, family(nb ml) nolog // model as negative binomial (NB2)
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The model output is given as

. glm nby x1 x2, family(nb ml) nolog

Generalized linear models No. of obs = 50000
Optimization : ML Residual df = 49997

Scale parameter = 1
Deviance = 54131.21274 (1/df) Deviance = 1.082689
Pearson = 49994.6481 (1/df) Pearson = .999953

Variance function: V(u) = u+(.5011)u^2 [Neg. Binomial]
Link function : g(u) = ln(u) [Log]

AIC = 6.148235
Log likelihood = -153702.8674 BIC = -486825.2

OIM
nby Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7570565 .0038712 195.56 0.000 .749469 .764644
x2 -1.252193 .0040666 -307.92 0.000 -1.260164 -1.244223

_cons 1.993917 .0039504 504.74 0.000 1.986175 2.00166

Note: Negative binomial parameter estimated via ML and treated as fixed once

The values of the parameters and of alpha closely approximate the values specified
in the algorithm. These values may of course be altered by the user. Note also the
values of the dispersion statistics. The Pearson dispersion approximates 1.0, indicating
an approximate “perfect” fit. The deviance dispersion is 8% greater, demonstrating that
it is not to be used as an assessment of overdispersion. In the same manner in which
a Poisson model may be Poisson overdispersed, an NB2 model may be overdispersed as
well. It may, in fact, overadjust for Poisson overdispersion. Scaling standard errors or
applying a robust variance estimate can be used to adjust standard errors in the case
of NB2 overdispersion. See Hilbe (2007) for a discussion of NB2 overdispersion and how
it compares with Poisson overdispersion.

If you desire to more critically test the negative binomial dispersion statistic, then
you should use a Monte Carlo simulation routine. The NB2 negative binomial hetero-
geneity parameter, α, is stored in e(a) but must be referred to using single quotes,
‘e(a)’. Observe how the remaining statistics we wish to use in the Monte Carlo simu-
lation program are stored.

* SIMULATION OF SYNTHETIC NB2 DATA
* x1=.75, x2=-1.25, _cons=2, alpha=0.5
program nb2_sim, rclass
version 11
clear
set obs 50000
generate x1 = invnormal(runiform()) // define predictors
generate x2 = invnormal(runiform())
generate xb = 2 + 0.75*x1 - 1.25*x2 // define parameter values
generate a = .5
generate ia = 1/a
generate exb = exp(xb)
generate xg = rgamma(ia, a)
generate xbg = exb*xg
generate nby = rpoisson(xbg)
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glm nby x1 x2, nolog family(nb ml)
return scalar sx1 = _b[x1] // x1
return scalar sx2 = _b[x2] // x2
return scalar sxc = _b[_cons] // intercept (_cons)
return scalar pd = e(dispers_p) // Pearson dispersion
return scalar dd = e(dispers_s) // deviance dispersion
return scalar _a = `e(a)´ // alpha
end

To obtain the Monte Carlo averaged statistics we desire, use the following options
with the simulate command:

. simulate mx1=r(sx1) mx2=r(sx2) mxc=r(sxc) pdis=r(pd) ddis=r(dd) alpha=r(_a),
> reps(100): nb2_sim

(output omitted )

. summarize

Variable Obs Mean Std. Dev. Min Max

mx1 100 .750169 .0036599 .7407614 .758591
mx2 100 -1.250081 .0037403 -1.258952 -1.240567
mxc 100 2.000052 .0040703 1.987038 2.010417

pdis 100 1.000241 .0050856 .9881558 1.01285
ddis 100 1.084059 .0015233 1.079897 1.087076

alpha 100 .5001092 .0042068 .4873724 .509136

Note the range of parameter and dispersion values. The code for constructing syn-
thetic datasets produces quite good values; i.e., the mean of the parameter estimates is
very close to their respective target values, and the standard errors are tight. This is
exactly what we want from an algorithm that creates synthetic data.

We may use an offset into the NB2 algorithm in the same manner as we did for the
Poisson. Because the mean of the Poisson and NB2 are both exp(xb), we may use the
same method. The synthetic NB2 data and model with offset is in the nb2o rng.do file.

The NB1 model is also based on a Poisson-gamma mixture distribution. The NB1

heterogeneity or ancillary parameter is typically referred to as δ, not α as with NB2.
Converting the NB2 algorithm to NB1 entails defining idelta as the inverse of the value
of delta, the desired value of the model ancillary parameter, multiplying the result by the
fitted value, exb. The terms idelta and 1/idelta are given to the rgamma() function.
All else is the same as in the NB2 algorithm. The resultant synthetic data are modeled
using Stata’s nbreg command with the disp(constant) option.
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* SYNTHETIC LINEAR NEGATIVE BINOMIAL (NB1) DATA
* nb1_rng.do 3Apr2006
* Synthetic NB1 data and model
* x1= 1.1; x2= -.8; x3= .2; _c= .7
* delta = .3 (1/.3 = 3.3333333)
quietly {

clear
set obs 50000
set seed 13579
generate x1 = invnormal(runiform())
generate x2 = invnormal(runiform())
generate x3 = invnormal(runiform())
generate xb = .7 + 1.1*x1 - .8*x2 + .2*x3
generate exb = exp(xb)
generate idelta = 3.3333333*exb
generate xg = rgamma(idelta, 1/idelta)
generate xbg = exb*xg
generate nb1y = rpoisson(xbg)

}
nbreg nb1y x1 x2 x3, nolog disp(constant)

The model output is given as

. nbreg nb1y x1 x2 x3, nolog disp(constant)

Negative binomial regression Number of obs = 49910
LR chi2(3) = 82361.44

Dispersion = constant Prob > chi2 = 0.0000
Log likelihood = -89323.313 Pseudo R2 = 0.3156

nb1y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.098772 .0022539 487.49 0.000 1.094354 1.103189
x2 -.8001773 .0022635 -353.51 0.000 -.8046137 -.7957409
x3 .1993391 .0022535 88.46 0.000 .1949223 .2037559

_cons .7049061 .0038147 184.79 0.000 .6974294 .7123827

/lndelta -1.193799 .029905 -1.252411 -1.135186

delta .3030678 .0090632 .2858147 .3213623

Likelihood-ratio test of delta=0: chibar2(01) = 1763.21 Prob>=chibar2 = 0.000

The parameter values and value of delta closely approximate the specified values.

The NB-C, however, must be constructed in an entirely different manner from NB2,
NB1, or Poisson. NB-C is not a Poisson-gamma mixture and is based on the negative bi-
nomial probability distribution function. Stata’s rnbinomial(a,b) function can be used
to construct NB-C data. Other options, such as offsets, nonrandom variance adjusters,
and so forth, are easily adaptable for the nbc rng.do file.

* SYNTHETIC CANONICAL NEGATIVE BINOMIAL (NB-C) DATA
* nbc_rng.do 30dec2005
clear
set obs 50000
set seed 7787
generate x1 = runiform()
generate x2 = runiform()
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generate xb = 1.25*x1 + .1*x2 - 1.5
generate a = 1.15
generate mu = 1/((exp(-xb)-1)*a) // inverse link function
generate p = 1/(1+a*mu) // probability
generate r = 1/a
generate y = rnbinomial(r, p)
cnbreg y x1 x2, nolog

I wrote a maximum likelihood NB-C command, cnbreg, in 2005, which was posted
to the Statistical Software Components (SSC) site, and I posted an amendment in late
February 2009. The statistical results are the same in the original and the amended
version, but the amendment is more efficient and pedagogically easier to understand.
Rather than simply inserting the NB-C inverse link function in terms of xb for each
instance of μ in the log-likelihood function, I have reduced the formula for the NB-C log
likelihood to

LLNB−C =
∑

[y(xb) + (1/α)ln{1 − exp(xb)} + lnΓ(y + 1/α) − lnΓ(y + 1) − lnΓ(1/α)]

Also posted to the site is a heterogeneous NB-C regression command that allows
parameterization of the heterogeneity parameter, α. Stata calls the NB2 version of
this a generalized negative binomial. However, as I discuss in Hilbe (2007), there are
previously implemented generalized negative binomial models with entirely different
parameterizations. Some are discussed in that source. Moreover, LIMDEP has offered
a heterogeneous negative binomial for many years that is the same model as is the
generalized negative binomial in Stata. For these reasons, I prefer labeling Stata’s
gnbreg command a heterogeneous model. A hcnbreg command was also posted to SSC

in 2005.

The synthetic NB-C model of the above created data is displayed below. I have
specified values of x1 and x2 as 1.25 and 0.1, respectively, and an intercept value of
−1.5. alpha is given as 1.15. The model closely reflects the user-specified parameters.

. cnbreg y x1 x2, nolog
initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -85868.162
rescale: log likelihood = -78725.374
rescale eq: log likelihood = -71860.156

Canonical Negative Binomial Regression Number of obs = 50000
Wald chi2(2) = 6386.70

Log likelihood = -62715.384 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.252675 .015776 79.40 0.000 1.221754 1.283595
x2 .1009038 .0091313 11.05 0.000 .0830068 .1188008

_cons -1.504659 .0177159 -84.93 0.000 -1.539382 -1.469937

/lnalpha .133643 .0153947 8.68 0.000 .1034699 .1638161

alpha 1.142985 .0175959 1.109012 1.177998

AIC Statistic = 2.509
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3 Synthetic binomial models

Synthetic binomial models are constructed in the same manner as synthetic Poisson
data and models. The key lines are those that generate pseudorandom variates, a line
creating the linear predictor with user-defined parameters, a line using the inverse link
function to generate the mean, and a line using the mean to generate random variates
appropriate to the distribution.

A Bernoulli distribution consists entirely of binary values, 0/1. y is binary and is
considered here to be the response variable that is explained by the values of x1 and
x2. Data such as this is typically modeled using a logistic regression. A probit or
complementary log-log model can also be used to model the data.

y x1 x2
1: 1 1 1
2: 0 1 1
3: 1 0 1
4: 1 1 0
5: 1 0 1
6: 0 0 1

The above data may be grouped by covariate patterns. The covariates here are, of
course, x1 and x2. With y now the number of successes, i.e., a count of 1s, and m
the number of observations having the same covariate pattern, the above data may be
grouped as

y m x1 x2
1: 1 2 1 1
2: 2 3 0 1
3: 1 1 1 0

The distribution of y/m is binomial. y is a count of observations having a value of
y = 1 for a specific covariate pattern, and m is the number of observations having the
same covariate pattern. One can see that the Bernoulli distribution is a subset of the
binomial, i.e., a binomial distribution where m = 1. In actuality, a logistic regression
models the top data as if there were no m, regardless of the number of separate covariate
patterns. Grouped logistic, or binomial-logit, regression assumes appropriate values of y
and m. In Stata, grouped data such as the above can be modeled as a logistic regression
using the blogit or glm command. I recommend using the glm command because glm is
accompanied with a wide variety of test statistics and is based directly on the binomial
probability distribution. Moreover, alternative linked binomial models may easily be
applied.

Algorithms for constructing synthetic Bernoulli models differ little from creating
synthetic binomial models. The only difference is that for the binomial, m needs to
be accommodated. I shall demonstrate the difference—and similarity—of the Bernoulli
and binomial models by generating data using the same parameters. First, the Bernoulli-
logit model, or logistic regression:
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* SYNTHETIC BERNOULLI-LOGIT DATA
* berl_rng.do 5Feb2009
* x1=.75, x2=-1.25, _cons=2
clear
set obs 50000
set seed 13579
generate x1 = invnormal(runiform())
generate x2 = invnormal(runiform())
generate xb = 2 + 0.75*x1 - 1.25*x2
generate exb = 1/(1+exp(-xb)) // inverse logit link
generate by = rbinomial(1, exb) // specify m=1 in function
logit by x1 x2, nolog

The output is displayed as

. logit by x1 x2, nolog

Logistic regression Number of obs = 50000
LR chi2(2) = 10861.44
Prob > chi2 = 0.0000

Log likelihood = -18533.1 Pseudo R2 = 0.2266

by Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7555715 .0143315 52.72 0.000 .7274822 .7836608
x2 -1.256906 .016125 -77.95 0.000 -1.28851 -1.225301

_cons 2.018775 .0168125 120.08 0.000 1.985823 2.051727

Second, the code for constructing a synthetic binomial, or grouped, model:

* SYNTHETIC BINOMIAL-LOGIT DATA
* binl_rng.do 5feb2009
* x1=.75, x2=-1.25, _cons=2
clear
set obs 50000
set seed 13579
generate x1 = invnormal(runiform())
generate x2 = invnormal(runiform())
* =================================================
* Select either User Specified or Random denominator.
* generate d = 100 + 100*int((_n-1)/10000) // specified denominator values
generate d = ceil(10*runiform()) // integers 1-10, mean of ~5.5
* =================================================
generate xb = 2 + 0.75*x1 - 1.25*x2
generate exb = 1/(1+exp(-xb))
generate by = rbinomial(d, exb)
glm by x1 x2, nolog family(bin d)

The final line calculates and displays the output below:



J. M. Hilbe 117

. glm by x1 x2, nolog family(bin d)

Generalized linear models No. of obs = 50000
Optimization : ML Residual df = 49997

Scale parameter = 1
Deviance = 47203.16385 (1/df) Deviance = .9441199
Pearson = 50135.2416 (1/df) Pearson = 1.002765

Variance function: V(u) = u*(1-u/d) [Binomial]
Link function : g(u) = ln(u/(d-u)) [Logit]

AIC = 1.854676
Log likelihood = -46363.90908 BIC = -493753.3

OIM
by Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7519113 .0060948 123.37 0.000 .7399657 .7638569
x2 -1.246277 .0068415 -182.16 0.000 -1.259686 -1.232868

_cons 2.00618 .0071318 281.30 0.000 1.992202 2.020158

The only difference between the two is the code between the lines and the use of d
rather than 1 in the rbinomial() function. Displayed is code for generating a random
denominator and code for specifying the same values as were earlier used for the Poisson
and negative binomial offsets.

See Cameron and Trivedi (2009) for a nice discussion of generating binomial data;
their focus, however, differs from the one taken here. I nevertheless recommend reading
chapter 4 of their book, written after the do-files that are presented here were developed.

Note the similarity of parameter values. Use of Monte Carlo simulation shows that
both produce identical results. I should mention that the dispersion statistic is only
appropriate for binomial models, not for Bernoulli. The binomial-logit model above has
a dispersion of 1.002765, which is as we would expect. This relationship is discussed in
detail in Hilbe (2009).

It is easy to amend the above code to construct synthetic probit or complementary
log-log data. I show the probit because it is frequently used in econometrics.

* SYNTHETIC BINOMIAL-PROBIT DATA
* binp_rng.do 5feb2009
* x1=.75, x2=-1.25, _cons=2
clear
set obs 50000
set seed 4744
generate x1 = runiform() // use runiform() with probit data
generate x2 = runiform()
* ====================================================
* Select User Specified or Random Denominator. Select Only One
* generate d = 100+100*int((_n-1)/10000) // specified denominator values
generate d = ceil(10*runiform()) // pseudorandom-denominator values
* ====================================================
generate xb = 2 + 0.75*x1 - 1.25*x2
generate double exb = normal(xb)
generate double by = rbinomial(d, exb)
glm by x1 x2, nolog family(bin d) link(probit)
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The model output is given as

. glm by x1 x2, nolog family(bin d) link(probit)

Generalized linear models No. of obs = 50000
Optimization : ML Residual df = 49997

Scale parameter = 1
Deviance = 35161.17862 (1/df) Deviance = .7032658
Pearson = 50277.67366 (1/df) Pearson = 1.005614

Variance function: V(u) = u*(1-u/d) [Binomial]
Link function : g(u) = invnorm(u/d) [Probit]

AIC = 1.132792
Log likelihood = -28316.80908 BIC = -505795.3

OIM
by Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7467577 .0148369 50.33 0.000 .717678 .7758374
x2 -1.247248 .0157429 -79.23 0.000 -1.278103 -1.216392

_cons 2.003984 .0122115 164.11 0.000 1.98005 2.027918

The normal() function is the inverse probit link and replaces the inverse logit link.

4 Synthetic categorical response models

I have previously discussed the creation of synthetic ordered logit, or proportional odds,
data in Hilbe (2009), and I refer you to that source for a more thorough examination of
the subject. I also examine multinomial logit data in the same source. Because of the
complexity of the model, the generated data are a bit more variable than with synthetic
logit, Poisson, or negative binomial models. However, Monte Carlo simulation (not
shown) proves that the mean values closely approximate the user-supplied parameters
and cut points.

I display code for generating synthetic ordered probit data below.

* SYNTHETIC ORDERED PROBIT DATA AND MODEL
* oprobit_rng.do 19Feb 2008
display in ye "b1 = .75; b2 = 1.25"
display in ye "Cut1=2; Cut2=3,; Cut3=4"
quietly {

drop _all
set obs 50000
set seed 12345
generate double x1 = 3*runiform() + 1
generate double x2 = 2*runiform() - 1
generate double y = .75*x1 + 1.25*x2 + invnormal(runiform())
generate int ys = 1 if y<=2
replace ys=2 if y<=3 & y>2
replace ys=3 if y<=4 & y>3
replace ys=4 if y>4

}
oprobit ys x1 x2, nolog
* predict double (oppr1 oppr2 oppr3 oppr4), pr
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The modeled data appears as

. oprobit ys x1 x2, nolog

Ordered probit regression Number of obs = 50000
LR chi2(2) = 24276.71
Prob > chi2 = 0.0000

Log likelihood = -44938.779 Pseudo R2 = 0.2127

ys Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7461112 .006961 107.18 0.000 .7324679 .7597544
x2 1.254821 .0107035 117.23 0.000 1.233842 1.275799

/cut1 1.994369 .0191205 1.956894 2.031845
/cut2 2.998502 .0210979 2.957151 3.039853
/cut3 3.996582 .0239883 3.949566 4.043599

The user-specified slopes are 0.75 and 1.25, which are closely approximated above.
Likewise, the specified cuts of 2, 3, and 4 are nearly identical to the synthetic values,
which are the same to the hundredths place.

The proportional-slopes code is created by adjusting the linear predictor. Unlike
the ordered probit, we need to generate pseudorandom-uniform variates, called err,
which are then used in the logistic link function, as attached to the end of the linear
predictor. The rest of the code is the same for both algorithms. The lines required to
create synthetic proportional odds data are the following:

generate err = runiform()
generate y = .75*x1 + 1.25*x2 + log(err/(1-err))

Finally, synthetic ordered slope models may easily be expanded to having more
predictors as well as additional levels by using the same logic as shown in the above
algorithm. Given three predictors with values assigned as x1 = 0.5, x2 = 1.76, and
x3 = 1.25, and given five levels with cuts at 0.8, 1.6, 2.4, and 3.2, the amended part of
the code is as follows:

generate double x3 = runiform()
generate y = .5*x1 + 1.75*x2 - 1.25*x3 + invnormal(uniform())
generate int ys = 1 if y<=.8
replace ys=2 if y<=1.6 & y>.8
replace ys=3 if y<=2.4 & y>1.6
replace ys=4 if y<=3.2 & y>2.4
replace ys=5 if y>3.2
oprobit ys x1 x2 x3, nolog

(Continued on next page)
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Synthetic multinomial logit data may be constructed using the following code:

* SYNTHETIC MULTINOMIAL LOGIT DATA AND MODEL
* mlogit_rng.do 15Feb2008
* y=2: x1= 0.4, x2=-0.5, _cons=1.0
* y=3: x1=-3.0, x2=0.25, _cons=2.0
quietly {

clear
set memory 50m
set seed 111322
set obs 100000
generate x1 = runiform()
generate x2 = runiform()
generate denom = 1+exp(.4*x1 - .5*x2 + 1) + exp(-.3*x1 + .25*x2 + 2)
generate p1 = 1/denom
generate p2 = exp(.4*x1 - .5*x2 + 1)/denom
generate p3 = exp(-.3*x1 + .25*x2 + 2)/denom
generate u = runiform()
generate y = 1 if u <= p1
generate p12 = p1 + p2
replace y=2 if y==. & u<=p12
replace y=3 if y==.

}
mlogit y x1 x2, baseoutcome(1) nolog

I have amended the uniform() function in the original code to runiform(), which is
Stata’s newest version of the pseudorandom-uniform generator. Given the nature of the
multinomial probability function, the above code is rather self-explanatory. The code
may easily be expanded to have more than three levels. New coefficients need to be
defined and the probability levels expanded. See Hilbe (2009) for advice on expanding
the code. The output of the above mlogit rng.do is displayed as

. mlogit y x1 x2, baseoutcome(1) nolog

Multinomial logistic regression Number of obs = 100000
LR chi2(4) = 1652.17
Prob > chi2 = 0.0000

Log likelihood = -82511.593 Pseudo R2 = 0.0099

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

1 (base outcome)

2
x1 .4245588 .0427772 9.92 0.000 .3407171 .5084005
x2 -.5387675 .0426714 -12.63 0.000 -.6224019 -.455133

_cons 1.002834 .0325909 30.77 0.000 .9389566 1.066711

3
x1 -.2953721 .038767 -7.62 0.000 -.371354 -.2193902
x2 .2470191 .0386521 6.39 0.000 .1712625 .3227757

_cons 2.003673 .0295736 67.75 0.000 1.94571 2.061637
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By amending the mlogit rng.do code to an r-class ado-file, with the following lines
added to the end, the following Monte Carlo simulation may be run, verifying the
parameters displayed from the do-file:

return scalar x1_2 = [2]_b[x1]
return scalar x2_2 = [2]_b[x2]
return scalar _c_2 = [2]_b[_cons]
return scalar x1_3 = [3]_b[x1]
return scalar x2_3 = [3]_b[x2]
return scalar _c_3 = [3]_b[_cons]
end

The ado-file is named mlogit sim.

. simulate mx12=r(x1_2) mx22=r(x2_2) mc2=r(_c_2) mx13=r(x1_3) mx23=r(x2_3)
> mc3=r(_c_3), reps(100): mlogit_sim

(output omitted )

. summarize

Variable Obs Mean Std. Dev. Min Max

mx12 100 .4012335 .0389845 .2992371 .4943814
mx22 100 -.4972758 .0449005 -.6211451 -.4045792
mc2 100 .9965573 .0300015 .917221 1.0979

mx13 100 -.2989224 .0383149 -.3889697 -.2115128
mx23 100 .2503969 .0397617 .1393684 .3484274
mc3 100 1.998332 .0277434 1.924436 2.087736

The user-specified values are reproduced by the synthetic multinomial program.

5 Synthetic hurdle models

Finally, I show an example of how to expand the above synthetic data generators to con-
struct synthetic negative binomial-logit hurdle data. The code may be easily amended to
construct Poisson-logit, Poisson-probit, Poisson-cloglog, NB2—probit, and NB2-cloglog
models. In 2005, I published several hurdle models, which are currently on the SSC

web site. This example is shown to demonstrate how similar synthetic models may
be created for zero-truncated and zero-inflated models, as well as a variety of differ-
ent types of panel models. Synthetic models and correlation structures are found in
Hardin and Hilbe (2003) for generalized estimating equations models.

Hurdle models are discussed in Long and Freese (2006), Hilbe (2007), Winkelmann
(2008), and Cameron and Trivedi (2009). The traditional method of parameterizing
hurdle models is to have both binary and count components be of equal length, which
makes theoretical sense. However, they may be of unequal lengths, as are zero-inflated
models. Moreover, hurdle models can be used to estimate both over- and underdispersed
count data, unlike zero-inflated models.

The binary component of a hurdle model is typically a logit, probit, or cloglog binary
response model. However, the binary component may take the form of a right-censored
Poisson model or a censored negative binomial model. In fact, the earliest applications
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of hurdle models consisted of Poisson–Poisson and Poisson-geometric models. How-
ever, it was discovered that the censored geometric component has an identical log
likelihood to that of the logit, which has been preferred in most recent applications. I
published censored Poisson and negative binomial models to the SSC web site in 2005,
and truncated and econometric censored Poisson models in 2009. They may be used
for constructing this type of hurdle model.

The synthetic hurdle model below is perhaps the most commonly used version—a
NB2-logit hurdle model. It is a combination of a 0/1 binary logit model and a zero-
truncated NB2 model. For the logit portion, all counts greater than 0 are given the
value of 1. There is no estimation overlap in response values, as is the case for zero-
inflated models.

The parameters specified in the example synthetic hurdle model below are

* SYNTHETIC NB2-LOGIT HURDLE DATA
* nb2logit_hurdle.do J Hilbe 26Sep2005; Mod 4Feb2009.
* LOGIT: x1=-.9, x2=-.1, _c=-.2
* NB2 : x1=.75, n2=-1.25, _c=2, alpha=.5
clear
set obs 50000
set seed 1000
generate x1 = invnormal(runiform())
generate x2 = invnormal(runiform())
* NEGATIVE BINOMIAL- NB2
generate xb = 2 + 0.75*x1 - 1.25*x2
generate a = .5
generate ia = 1/a
generate exb = exp(xb)
generate xg = rgamma(ia, a)
generate xbg = exb*xg
generate nby = rpoisson(xbg)
* BERNOULLI
drop if nby==0
generate pi = 1/(1+exp(-(.9*x1 + .1*x2 + .2)))
generate bernoulli = runiform()>pi
replace nby=0 if bernoulli==0
rename nby y
* logit bernoulli x1 x2, nolog /// test
* ztnb y x1 x2 if y>0, nolog /// test
* NB2-LOGIT HURDLE
hnblogit y x1 x2, nolog
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Output for the above synthetic NB2-logit hurdle model is displayed as

. hnblogit y x1 x2, nolog

Negative Binomial-Logit Hurdle Regression Number of obs = 43443
Wald chi2(2) = 5374.14

Log likelihood = -84654.938 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

logit
x1 -.8987393 .0124338 -72.28 0.000 -.9231091 -.8743695
x2 -.0904395 .011286 -8.01 0.000 -.1125597 -.0683194

_cons -.2096805 .0106156 -19.75 0.000 -.2304867 -.1888742

negbinomial
x1 .743936 .0069378 107.23 0.000 .7303381 .7575339
x2 -1.252363 .0071147 -176.02 0.000 -1.266307 -1.238418

_cons 2.003677 .0070987 282.26 0.000 1.989764 2.01759

/lnalpha -.6758358 .0155149 -43.56 0.000 -.7062443 -.6454272

AIC Statistic = 3.897

The results approximate the specified values. A Monte Carlo simulation was pre-
formed, demonstrating that the algorithm does what it is aimed to do.

6 Summary remarks

Synthetic data can be used with substantial efficacy for the evaluation of statistical
models. In this article, I have presented algorithmic code that can be used to create
several different types of synthetic models. The code may be extended to use for the
generation of yet other synthetic models.

I am a strong advocate of using these types of models to better understand the models
we apply to real data. I have used these models, or ones based on earlier random-number
generators, in Hardin and Hilbe (2007) and in both of my single authored texts (Hilbe
2007, 2009) for assessing model assumptions. With computers gaining in memory and
speed, it will soon be possible to construct far more complex synthetic data than we
have here. I hope that the rather elementary examples discussed in this article will
encourage further use and construction of artificial data.
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Abstract. Mata is Stata’s matrix language. In the Mata Matters column, we
show how Mata can be used interactively to solve problems and as a programming
language to add new features to Stata. The subject of this column is using Mata to
solve data analysis problems with the new Stata commands putmata and getmata,
which were added to official Stata 11 in the update of 11 February 2010.
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1 Introduction

Some problems are more easily solved in Mata than they are in Stata. The problem is
that putting data from Stata to Mata and getting the result back again is difficult for
casual users and tedious even for experienced users. The new Stata commands putmata
and getmata solve that problem. These commands were added to official Stata 11 in
the update of 11 February 2010.

With putmata, we can type

. putmata *
(12 vectors posted)

and thus create a column vector in Mata for each variable in our data. The vectors will
have the same names as the variables. If we typed putmata * with the automobile data
in memory, we would then have vectors named make, price, mpg, rep78, headroom,
trunk, weight, length, turn, displacement, gear ratio, and foreign available for
use in Mata.

Note that you type putmata at the Stata dot prompt, not at the Mata colon prompt.
Rather than typing putmata *, let’s type

. putmata y=mpg X=(weight foreign 1)
(1 vector, 1 matrix posted)

Typing that creates a vector in Mata called y (which is just mpg, renamed) and a matrix
called X (which contains the columns corresponding to weight, foreign, and a vector
of 1s). We could then enter Mata and type

. mata
: b = invsym(X´X)*X´y
: yhat = X*b
: end
.

c© 2010 StataCorp LP pr0050
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Vector yhat now contains the predicted values from a regression of y on X. To post the
Mata vector back into our Stata dataset, we could type

. getmata yhat

We would now have the new variable yhat in our Stata dataset.

The demonstration is intended to be motivational; I am not seriously suggesting you
type the above instead of

. regress mpg weight foreign
(output omitted )

. predict yhat

Nonetheless, the motivational example is the outline for what follows. We are going to
discuss the details of putmata and getmata, we are going to use putmata as a jumping-
off point to discuss writing Mata code to solve both statistical and data-management
problems, and we are going to discuss how to package solutions in do-files.

Before we start, verify that you have the new commands putmata and getmata. In
Stata, type

. help putmata

If you are told that help for putmata is not found, you need to update your Stata. You
do that by typing

. update all

2 The putmata command

2.1 Syntax

The syntax of putmata is

putmata putlist
[
if
] [

in
] [

, replace omitmissing view
]

putlist can be any combination of the following:

varname or varlist
vecname=varname
matname=(varlist)
matname=(varlist # . . . )

For example,

1. You can type putmata mpg to create in Mata the vector mpg.

2. You can type putmata mpg weight to create in Mata the vectors mpg and weight.
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3. You can type putmata * to create in Mata vectors for every variable in the Stata
dataset.

4. You can type putmata y=mpg to create Mata vector y containing the contents of
Stata variable mpg.

5. You can type putmata X=(weight foreign) to create Mata matrix X containing
weight in its first column and foreign in its second.

6. You can type putmata X=(weight foreign 1) to create Mata matrix X containing
weight in its first column, foreign in its second, and constant 1 in its third.

You can even type putmata y=mpg X=(weight foreign 1) to perform the actions
of examples 5 and 6 in a single line. If you specify the omitmissing option, however,
it does matter whether you type separate or single commands, and you do not want to
type separate commands:

. putmata y=mpg, omitmissing

. putmata X=(weight foreign 1), omitmissing

With the above commands, vector y will omit observations in which mpg contains miss-
ing. Matrix X will omit observations in which weight or foreign contain missing.
What you want, however, is to omit observations from both y and X in which any of the
variables contain missing. You want to type

. putmata y=mpg X=(weight foreign 1), omitmissing

2.2 Options

replace indicates that it is okay to replace an existing Mata vector or matrix. If you do
not specify replace and the Mata vector or matrix already exists, putmata issues
an error.

omitmissing specifies to omit observations that contain missing values in any of the
variables in putlist from the rows of the vectors and matrices created in Mata. In the
motivational example in section 1, we coded b = invsym(X’X)*X’y, and we created
y and X by typing putmata y=mpg X=(weight foreign 1). We just assumed there
were no missing values. Had there been missing values, we would have wanted to
create y and X by typing

. putmata y=mpg X=(weight foreign 1), omitmissing

view specifies that the vector and matrices be created as views onto the Stata data
rather than as copies of the contents of the data. Views can save considerable
amounts of memory and they have other advantages as well, although sometimes
those advantages can turn into disadvantages. All of which is to say, views should
be used with caution. We will discuss views later.
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3 Using putmata to produce mathematical and statistical
results

putmata is all you need to solve some problems. For instance, consider solving the set
of linear equations y = Xb for b. The solution can be obtained by premultiplying both
sides by X−1, which results in X−1y = X−1Xb or b = X−1y. If you were teaching a
course on linear algebra, you could demonstrate this solution. You might start with y
and x values entered into a Stata dataset:

. list

y x1 x2 x3

1. 27 2 -5 6
2. -20 3 7 -9
3. -9 -8 2 1

You might type the following:

. putmata y X=(x*)
(1 vector, 1 matrix posted)

. mata
mata (type end to exit)

: y
1

1 27
2 -20
3 -9

: X
1 2 3

1 2 -5 6
2 3 7 -9
3 -8 2 1

: b = luinv(X)*y

: b
1

1 4
2 7
3 9

: X*b
1

1 27
2 -20
3 -9

: end
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You can read the online help or the manual about the Mata function luinv(). I chose
it because I needed a matrix inverter that could handle nonsymmetric matrices.

More interestingly, let’s consider the overdetermined linear set of equations y = Xb
when X is n×k, n > k. We have more equations than the unknown coefficients. Linear
regression b = (X′X)−1X′y provides one solution. It turns out that b = X−1y provides
the same solution if you define X−1 to be the Moore–Penrose generalized inverse for
nonsquare matrices! In the Moore–Penrose inverse, X−1X equals the identity matrix,
but XX−1 does not. In any case, we can demonstrate the equivalence:

. sysuse auto
(1978 Automobile Data)

. putmata y=mpg X=(weight foreign 1)
(1 vector, 1 matrix posted)

. mata
mata (type end to exit)

: pinv(X)*y
1

1 -.0065878864
2 -1.650029106
3 41.67970233

: end

You could compare the above result with the coefficients reported by typing

. regress mpg weight foreign

or you could compare it with the Mata calculation of invsym(X’X)*X’y.

Mata is a great way to teach. Just as importantly, if you have a matrix calculation
you need to make based on your data, you can use putmata to post the appropriate
vector and matrices from your data and then use Mata to calculate the result.

If you are going to use Mata to make real statistical calculations, I recommend you
normalize your data so that the variables are roughly scaled similarly because, when you
write matrix formulas, you are not going to concern yourself with using variants that
are more numerically accurate. For instance, Stata does not calculate linear regression
using (X′X)−1X′y, although the calculation it makes is algebraically equivalent, which
is to say, would yield the same results on an infinite-precision computer. The calcu-
lation Stata makes is more precise on finite-precision computers. Stata removes the
means (and later solves for the intercept separately), and it uses a solver to obtain the
coefficients, and more. The details are long and involved and the point is this: you are
not going to invest that kind of effort. You are going to code (X′X)−1X′y or whatever
is the equivalent for your problem. There is nothing numerically wrong with using such
formulas as long as you do not tax them by having variables that differ too wildly in
scale.
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The automobile data is an example of a dataset that is sufficiently scaled. In the
automobile data, mpg varies between 12 and 41 (mean 21.3), weight varies between
1,760 and 4,840 (mean 3,019.5), and foreign is either 0 or 1 (mean 0.2973). Scaling
that varies by a few orders of magnitude is usually of no concern. Let me show you,
however, that results would be more accurate if we divided weight by 1,000 and mpg
by 10.

It is a theoretical property of linear regression—and easy to prove—that the sum
of the residuals will be zero when the coefficient vector b is set to the least-squares
result. When we calculate the sum of those residuals using b obtained from any finite-
precision calculation, however, the sum will not be precisely zero. Using the example
above, if we use the b obtained by Stata’s regress command, the sum is –5.1e–15
(meaning −5.1 × 10−15). If we use b = pinv(X)*y, the sum is −2.3e–13. If we use
b = invsym(X’X)*X’y, the sum is 7.1e–13. Actually, I have made an adjustment to all
those numbers, which I will explain, but these are the right numbers for comparison.
If we rescaled the data by dividing weight by 1,000 and mpg by 10, the errors would
be 3.22e–14 for pinv(X)*y and −6.48e–13 for invsym(X’X)*X’y, and unchanged for
regress. The two matrix calculations are more accurate when made on better scaled
data—the errors were closer to zero—and the results from regress remain unchanged.
regress is robust to scaling.

In any case, all the errors are small. The maximum average error per observation
was a mere 7.1e–13/74 = 9.6e–15 miles per gallon. Nonetheless, errors were smaller
when we used scaled data.

I mentioned that I adjusted the errors reported above. I did that because when
one calculates error on a finite-precision computer, one obtains the desired error plus
the error in making the error calculation itself! Were you to calculate these sums
of the residuals in the obvious way, which you could do using Mata and by typing
sum(y-X*b), you would obtain results different from what I reported. You would obtain
–2.5e–13 for b obtained from regress, –2.5e–12 for b = pinv(X)*y, and –6.7e–12 for
b = invsym(X’X)*X’y. Those error calculations include not just the error caused by
numerical error in the calculation of b but also the numerical error in the calculation
of sum(y-X*b). Such unadjusted results are usually adequate for ranking techniques,
and in some sense they are actually better because they also include the error in how
you would be likely to use the calculated results. The results are adequate for ranking
because, whatever is the error in sum(y-X*b), it is a function of y and X, and you are
using the same y and X in all three calculations, so the error is roughly held constant.
I say roughly because the error in the error calculation is also a function of b and b is
not being held constant; but it is precisely the effect of the different b’s that we want
to evaluate, so we will have to accept some contamination in our results. The various
b vectors are nearly identical anyway, so the variation in the contamination cannot be
much.

I, however, want to compare results from unscaled and rescaled data, which is to say,
the y and X that will be used in sum(y-X*b) will differ, and thus the error in calculating
the error could differ across comparisons. To prevent that, after obtaining b from each
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method, I made the error calculations on the scaled data in all cases, which is to say,
on the same y and X. Thus, when calculating errors for b calculated on unscaled data,
I multiplied the calculated weight coefficient by 100 and divided the other calculated
coefficients by 10 to put them on the scale for data that had mpg divided by 10 and
weight divided by 1,000. Multiplication and division introduce no error on modern
digital computers (proof omitted). That rescaling, however, allowed sum(y-X*b) to be
calculated using the same y and X in all cases, and thus I held roughly constant the
error in the error calculation. My adjustment also resulted in more accurate results,
but that is for other reasons I am not going to explain here because it is not necessary
that my results be more accurate. It is sufficient that I have held the error in the error
calculation roughly constant.

By the way, I have still not told you what the true error is because I do not know it.
To calculate the true error, I would have to calculate yet another rescaling that would
minimize the error in the error calculation, and then I would report to you the error
y-sum(X*b) calculated using that data, and I would add a plus-or-minus to the end of
the reported result that represented the error in the error calculation itself.

All of which is a long way of saying that you should think about putting all your
variables on roughly the same scale when you are not willing to think through the
numerical issues.

4 Using putmata on subsets of observations

Assume we have the following code:

putmata y=mpg X=(weight length 1)
mata:
b = pinv(X)*y
b
end

where b = pinv(X)*y is standing in for some more complicated calculation you wish to
make.

Say that we now wish to run this code on only the foreign cars in the data. We
would modify the putmata command; the Mata code would remain unchanged:

putmata y=mpg X=(weight length 1) if foreign
mata:
b = pinv(X)*y
b
end

Whereas previously y would have been 74× 1 and X would have been 74× 3, now y will
be 22 × 1 and X will be 22 × 3 because foreign is true in 22 observations in the data.

Say that we want to run on all our data, but this time, let’s assume variables mpg,
weight, and length have missing values. They do not in the automobile data, but we
will imagine we are using some other dataset. The missing values in y and X will result
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in a 3 × 1 vector b containing missing values. If we want to run on only the complete
observations, one solution would be

putmata y=mpg X=(weight length 1) if mpg<. & weight<. & length<.
mata:
b = pinv(X)*y
b
end

An easier solution is

putmata y=mpg X=(weight length 1), omitmissing
mata:
b = pinv(X)*y
b
end

The omitmissing option omits observations with missing values in any of the variables
to which we refer. If you specify omitmissing, it is important that you specify all the
vectors and matrices you want to create with a single putmata command. If we typed
putmata y=mpg, omitmissing and putmata X=(weight length 1), omitmissing, then
vector y would omit observations for which mpg contains missing and X would omit ob-
servations for which weight or length contain missing, with the result that the X and
y might not be conformable or, worse, be conformable but omit different observations.

5 The getmata command

5.1 Description

getmata is the reverse of putmata—it creates Stata variables from Mata vectors and
matrices. In many cases, you will not need getmata. In the problems above, it was
sufficient merely to report results. We used putmata to put our data into Mata, and
we used Mata to calculate and display results. In other problems, you may create new
vectors in Mata and need to put them back as variables in your data.

Here is a simplified version of a real problem that showed up on Statalist: You need
to create new Stata variable d from existing Stata variable c, to be defined as

di =
∑

j|cj>ci

(cj − ci)

where i and j index observations. This problem can be solved in Stata, but it is easier to
solve it in Mata because the Mata code we write is nearly identical to the mathematical
statement of the problem. If c and d were Mata vectors, the code would be

d = J(rows(c), 1, 0)
for (i=1; i<=rows(c); i++) {

for (j=1; j<=rows(c); j++) {
if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])

}
}
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The most difficult part of this solution to understand is the first line, d = J(rows(c),
1, 0), and that is only because you may not be familiar with Mata’s J() function. d
= J(rows(c), 1, 0) creates a rows(c)× 1 column vector of 0s. The arguments of J()
are in just that order.

c is not a vector in Mata, however. We already know how to solve that:

. putmata c

It will hardly surprise you to learn that the way we get Mata vector d back into Stata
afterward is

. getmata d

5.2 Syntax

Before we put all this together, let me describe the getmata command, the syntax of
which is

getmata getlist
[
, double

[
update | replace ] id(name) force

]
A getlist is much like a putlist, but reversed. A getlist can be any combination of the
following:

vecname
varname=vecname
(varname varname . . . varname)=matname
(varname*)=matname

For example,

1. You can type getmata x1 to create in Stata the new variable x1 containing the
contents of Mata vector x1.

2. You can type getmata x1, update to create or replace in Stata the variable x1
containing the contents of Mata vector x1.

3. You can type getmata x1 x2 to create in Stata the new variables x1 and x2
containing the contents of Mata vectors x1 and x2.

4. You can type getmata x1 x2, update to create or replace in Stata the variables
x1 and x2 containing the contents of Mata vectors x1 and x2.

5. You can type getmata (firstvar secondvar) = X to create in Stata the new
variables firstvar and secondvar containing the first and second columns of
matrix X. X must be N × 2. If X had three columns, then you would need to
specify three variable names. Obviously, this construction can be used with the
update option, as can all getmata constructions, so I will not mention it again.

6. You can type getmata (myvar*) = X to create in Stata the new variables myvar1,
myvar2, . . . , equal to the first, second, . . . , columns of Mata matrix X.
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5.3 Options

double creates new numeric variables as doubles rather than the default float.

update or replace allows a vector to be placed in an existing variable. The two options
have the same meaning unless the id() option is also specified.

id(name) is the topic of an entire section below.

force allows getting vectors that have fewer or more columns than observations in the
data. You should never have to specify this option.

6 Using putmata and getmata

So now we can put together the solution of creating d from c. To remind you, we wish
to create new variable d from existing variable c, where

di =
∑

j|cj>ci

(cj − ci)

To show you that the solution works, I use a dataset containing the integers from 1 to
4. The solution is

. list

c

1. 1
2. 2
3. 3
4. 4

. putmata c
(1 vector posted)

. mata
mata (type end to exit)

: d = J(rows(c), 1, 0)

: for (i=1; i<=rows(c); i++) {
> for (j=1; j<=rows(c); j++) {
> if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])
> }
> }

: end

. getmata d
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. list

c d

1. 1 6
2. 2 3
3. 3 1
4. 4 0

If I had to solve this problem, I would package my solution as a do-file.

begin myfile1.do

version 11 // see note 1

clear mata // see note 2
capture drop d // see note 3

putmata c

mata: // see note 4
d = J(rows(c), 1, 0)
for (i=1; i<=rows(c); i++) {

for (j=1; j<=rows(c); j++) {
if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])

}
}
end

getmata d

end myfile1.do

Notes:

1. Do-files should always begin with a version statement. That is what ensures
that the do-file continues to work in years to come as new versions of Stata are
released.

2. The do-file should not depend on Mata having certain vectors, matrices, or pro-
grams already loaded. To ensure this is true, we clear Mata.

3. It was easier for me to debug this do-file if I did not have to remember to drop d
each time I reran it.

4. I coded mata: (mata with a colon), yet previously when I used Mata interactively,
I omitted the colon. Coding mata: tells Mata to stop if any error occurs, which is
exactly how I want my do-file to behave. Using mata without the colon tells Mata
not to stop, but to instead give me an opportunity to fix what I mistyped, which
is how I work interactively.
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7 Using putmata and getmata on subsets of observations

In the example above where we created variable d from c, we assumed that there were
no missing values in c, or at least we did not consider the issue. It turns out that our
code produces several missing values in the presence of just one missing value. Below I
have already dropped the data used in the previous example and have entered another
dataset:

. list

c

1. 1
2. 2
3. .
4. 3
5. 4

. do myfile1.do
(output omitted )

. list

c d

1. 1 .
2. 2 .
3. . 0
4. 3 .
5. 4 .

We could modify the Mata code in myfile1.do to watch for missing values and to
exclude them from the calculation, but we already know an easier way. Rather than
creating Mata vector c to include all the observations from Stata variable c, we could
create the vector to include only the nonmissing values by changing putmata c to read

putmata c if c<.

or

putmata c, omitmissing

The result of either of those commands will be to create vector c to be 4×1 rather than
5 × 1.

There is, however, an issue. At the end of our code where we post the Mata solution
vector d to new Stata variable d—we coded getmata d—we will need to specify which
five observations are to receive the four calculated results. getmata has a syntax for
that, but before we can use it, we will need a variable that uniquely identifies the
observations. In real data, you would be likely to already have such a variable, but in
case you do not, it is easy to create such a variable. You type generate newvar = n.
Let’s create such a variable in our data:
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. generate fid = _n

. list

c fid

1. 1 1
2. 2 2
3. . 3
4. 3 4
5. 4 5

fid is a perfectly good identification variable, but I am about to multiply fid by 10
just to emphasize to you that the identification variable does not have to correspond to
observation numbers.

. replace fid = fid*10
(5 real changes made)

. list

c fid

1. 1 10
2. 2 20
3. . 30
4. 3 40
5. 4 50

An identification variable is a variable that takes on different values for each obser-
vation in the data. The values could be 1, 2, . . . ; or they could be 1.25, –2, . . . ; or they
could be Nick, Mary, and so on. The values can be numeric or string, and they can be
in any order. All that is important is that the variable contain distinct values for each
observation.

Now that we have an identification variable, we can modify the ending getmata
command to read

getmata d, id(fid)

instead of just getmata d. The id(fid) option specifies that values in variable fid are
to be matched with the values in vector fid to determine the observations of variable
d that are to be filled in from vector d. For that to work, we must post to Mata the
values of fid, so the entire solution reads

putmata fid c, omitmissing
mata:
Mata code goes here
end
getmata d, id(fid)

When we putmata fid c, omitmissing with our example data, two 4 × 1 vectors
will be created in Mata, fid and c. The vectors will contain values from observations
1, 2, 4, and 5, omitting observation 3 because c==. in that observation. Thus vector
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fid will contain (10, 20, 40, 50)′. Later, at the end of our code, when we getmata d,
id(fid), Stata will compare the contents of vector fid = (10, 20, 40, 50)′ with the values
of variable fid, and Stata will be able to work out that vector row 1 corresponds to
observation 1, row 2 corresponds to observation 2, row 3 to observation 4, and row 4 to
observation 5. In this example, fid increases with observation number, but that is not
required.

Our updated do-file reads

begin myfile2.do

version 11

clear mata
capture drop d

putmata fid c, omitmissing // (changed)

mata:
d = J(rows(c), 1, 0)
for (i=1; i<=rows(c); i++) {

for (j=1; j<=rows(c); j++) {
if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])

}
}
end

getmata d, id(fid) // (changed)

end myfile2.do

Here is the result of running the do-file:

. list

c fid

1. 1 10
2. 2 20
3. . 30
4. 3 40
5. 4 50

. do myfile2
(output omitted )

. list

c fid d

1. 1 10 6
2. 2 20 3
3. . 30 .
4. 3 40 1
5. 4 50 0
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8 Using views

When you type or code putmata x, vector x is created as a copy of the Stata variable
x. The variable and vector are separate things. An alternative is to make the Mata
vector a view onto the Stata variable. You do that by typing putmata x, view. Now
the variable and vector share the same recording of the values. Views use less memory
than copies, although views are slightly less efficient in terms of execution time. Views
have other advantages and disadvantages, too.

Say that you type putmata x and then, in Mata, code x[1]=20. Changing vector x
leaves the variable x unchanged. If you had typed putmata x, view, however, changing
vector x would simultaneously change variable x, because the variable and the vector are
the same thing. Sometimes, that is an advantage. At other times, it is a disadvantage.

There is more to know. If you are working with views and, in the middle of the
Mata session, take a break and return to Stata, it is important that you do not modify
the Stata data in certain ways. When you create a view, Stata records notes about
the mapping. Those notes might read that variable vector x is a view onto variable
3, observations 2 though 20 and observation 39. If you change the sort order of the
data, the view will still be working with observations 2 through 20 and 39 even though
those observations now contain different data! If you were to drop the first or second
variable, the view would still be working with variable 3 even though that will now be
a different variable! Alternatively, if you update variable 3 with improved values, those
improvements will appear in the Mata vector, too.

The memory savings offered by views is considerable when working with large
datasets. Say that you have a dataset containing 1,000,000 observations on 200 vari-
ables. That dataset might be 800,000,000 bytes in size, or 763 megabytes. (To obtain
megabytes, you divide by 1,0242.) Typing putmata * would create copies of each vari-
able, meaning creation of two hundred 1,000,000-element double-precision vectors. You
would just have consumed another 200 × 1,000,000 × 8/1,0242 = 1,526 megabytes of
memory, or 1,526/1,024 = 1.5 gigabytes. Typing putmata *, view, however, would
consume only 24 or so kilobytes of memory, a practically insignificant amount.

All the examples shown so far work equally well with copies or views. We simply
would need to add the view option to the putmata commands.

If we are going to work with views, we could make d a view, too. If we make d a
view, we can eliminate the getmata commands at the end of our code, because views
are the variable and thus they put themselves back. This even means we could eliminate
the fid variable because views will handle their own alignment of vectors and variables.

Remember that the do-file creates new variable d from existing variable c. We
modify the do-file to create new variable d at the outset, in Stata, and then create views
onto both c and d.

In the creation of those views, we can omit the observations that have c>=. by simply
including the omitmissing option with putmata. Finally, we delete the now irrelevant
getmata command at the end. Our code reads
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begin myfile3.do

version 11

clear mata
capture drop d
generate d = 0 // see note 1

putmata c d, omitmissing view // see note 2

mata:
d[.] = J(rows(c), 1, 0) // see note 3
for (i=1; i<=rows(c); i++) {

for (j=1; j<=rows(c); j++) {
if (c[j]>c[i]) d[i] = d[i] + (c[j] - c[i])

}
}

end

replace d=. if c==. // see note 4
// see note 5

end myfile3.do

Notes:

1. We now create new variable d at the outset. We create it containing 0, not missing
values. That is important because we are about to issue a putmata command with
the omitmissing option, and we do not want the missing values in d to cause all
the observations to be omitted.

2. We include the view option on the putmata command, and we include variable d.

3. We could have deleted this line, but instead I modified it to remind you not to
make a terrible error. The line d[.] = J(rows(c), 1, 0) fills in d with zeros. I
could have omitted the line because d is already filled with zeros. I did not delete
it because I wanted an excuse to call your attention to the left-hand side of the
assignment. I changed what was previously

d = J(rows(c), 1, 0)

to

d[.] = J(rows(c), 1, 0)

I changed d to d[.]. That change is of great importance. What we previously
coded created vector d. What I now code changes the values stored in existing
vector d. If I left what we coded previously, Mata would discard the view stored
in d and create a new d as a regular Mata vector unconnected to Stata. Our Mata
code would have worked, but none of the values stored in regular vector d would
have made it back to Stata variable d.

4. We add the line replace d=. if c<=.. I admit that was something that I discov-
ered I needed to add the first time I tested this do-file and looked at the output.
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What I saw was that d = 0 in the observation in which c==.. That happened
because we created d containing zeros at the outset. It would have been better if
we had created d by coding

generate d = 0 if c<.

rather than generate d = 0. I left the mistake in, however, to show that the
author is not infallible.

5. We omit the line putmata d or putmata d, id(fid). Vector d is variable d. We
need not worry about alignment because when the view d was created, it was
created as a view onto only the relevant observations.

My personal opinion concerning views is that I avoid them for variables that appear
on the left-hand side of the assignment operator. That is, I would have left d as a
regular vector and left in the getmata d, id(fid). If you review the above notes, all
the complication was caused by d being a view. I had to remember to code d[.] = . . .
rather than d =, which I invariably forget. I cannot fill d with missing at the outset
because putmata, omitmissing will then omit all the observations. Concerning the
latter, there are more clever ways I could have handled that. I could have filled in d
with 0 and performed the putmata, as I did, and then immediately changed the contents
of d to be missing. Even so, I try to avoid using views for variables to which I will be
making assignments. I do use views for right-hand-side variables because, in that case,
views have no implications for subsequent code.

Anyway, this do-file works:

. list

c

1. 1
2. 2
3. .
4. 3
5. 4

. do myfile3
(output omitted )

. list

c d

1. 1 6
2. 2 3
3. . .
4. 3 1
5. 4 0
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9 Conclusion

Some problems are more easily solved in Mata than in Stata. In fact, Mata and Stata
complement each other well because problems that are easy in one are often difficult in
the other. With putmata, it is easy to move your data into Mata. With getmata, you
can move data back from Mata to Stata if necessary. I showed two classes of examples:

1. Analysis. In analysis situations, you use putmata, but you do not need getmata.
I showed how to obtain b = (X′X)−1X′y, and I showed that the same results
could be obtained by b = X−1y for a suitable definition of matrix inversion. Both
of these examples would be useful in teaching, but you are to imagine that these
simple formulas stand in for more lengthy calculations implementing the latest
result found in the professional journals. I once gave a talk where I dropped into
Mata to calculate a generalized method of moments estimator for a Poisson model
with an endogenous variable, and I did so in a dozen or so lines of Mata code using
the formulas right from the original paper. Stata now does generalized method of
moments, so there is no reason to rehash an old talk here.

2. Data management. I showed how to create a difficult-to-calculate variable using
Mata. Here you use putmata to get the data into Mata, and you use getmata
to get the result back into Stata. Stata is wonderful at data management and
most complicated tasks are made easy. Every so often, however, one comes upon
a problem where the Stata solution is elusive. There is one, you know, and usually
it requires only a few lines, but you cannot imagine what they might be. In such
cases, it is usually quicker to drop into Mata and go directly at the solution.

putmata and getmata are useful commands, but bear in mind that they were de-
signed to help solve custom data analysis problems: the types of problems that arise in
a particular analysis and that one solves in do-files. They were not designed for use by
programmers coding general solutions implemented as ado-files. putmata and getmata
create and work with global vectors and matrices, and that is why their results are so
easy to use. That same feature makes them inappropriate for ado-files. Programmers
writing ado-files need results stored in local vectors and matrices. Stata already has
tools for creating such local vectors and matrices, namely, st data(), st view(), and
st store(); see [M-5] st data( ) and [M-5] st view( ). Programmers may wish to think
of putmata as st data() and st view(), and getmata as st store(), for interactive
and do-file use.
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Abstract. The statsby command collects statistics from a command yielding
r-class or e-class results across groups of observations and yields a new reduced
dataset. statsby is commonly used to graph such data in comparisons of groups;
the subsets and total options of statsby are particularly useful in this regard.
In this article, I give examples of using this approach to produce box plots and
plots of confidence intervals.

Keywords: gr0045, statsby, graphics, groups, comparisons, box plots, confidence
intervals

1 Introduction

Datasets are often subdivided at one or more levels according to some kind of group
structure. Statistically minded researchers are typically strongly aware of the need for,
and the value of, comparisons between patients, hospitals, firms, countries, regions,
sites, or whatever the framework is for collecting and organizing their data. Indeed, for
many people, that kind of comparison is at the heart of what they do daily within their
research.

Stata supports separate group analyses in various ways. Perhaps the most well-
known and important is the by: construct, a subject of one of the earliest Speaking
Stata columns (Cox 2002). This column focuses on [D] statsby, a command that until
now has received only passing mention in Speaking Stata (Cox 2001, 2003). The main
idea of statsby is simple and it is well documented. However, experience on Statalist
and elsewhere indicates that many users who would benefit from statsby are unaware
of its possibilities. The extra puff of publicity here goes beyond the manual entry in
stressing its potential for graphical comparisons.

Focusing exclusively on statsby is not intended as a denial that there are other
solutions to the same, or related, problems. The work of Newson (1999, 2000, 2003) is
especially notable in this regard and goes beyond the singular purpose explored here.

2 The main idea

The main idea of statsby is that it offers a framework, not only for automating separate
analyses for each of several groups, but also for collating the results. The effect is to
relieve users of much of the tedious organizing work that would be needed otherwise. The

c© 2010 StataCorp LP gr0045
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default mode of operation is that statsby overwrites the original dataset, subdivided
in some way, with a reduced dataset with just one observation for each group. The
saving() option, however, permits results to be saved on the side so that the original
dataset remains in memory.

A common and essentially typical example of applying statsby is that a panel
dataset containing one or more observations for each panel would be reduced to a
dataset with precisely one observation for each panel. Those observations contain panel
identifiers together with results for each panel, usually e- or r-class results from some
command. Because there is no stipulation that the command called is an official com-
mand, there is scope for users to write their own programs leaving such results in their
wake and thus to automate essentially any kind of calculation.

statsby does not support graphs directly, but the implications for graphics are
immediate. Graphics for groups imply the collation of group results followed by graphing
operations. Using statsby can reduce the problem to just the second of these two,
subject as usual to minor questions of titling, labeling, and so forth.

3 Box plots for all possible subsets

I will not recapitulate the details of the manual entry, which those unfamiliar with the
command can read for themselves. Rather, I will underline the value of statsby by
showing how it makes several graphical tasks much easier.

Variants on box plots remain popular in statistical science. In an earlier column
(Cox 2009), I underlined how graph twoway allows your own alternatives if ever the
offerings of graph box or graph hbox are not quite suitable.

Let us pick up that theme and give it a new twist. The subsets option of statsby
makes easy a division into all possible subsets of a dataset. That can be useful so
long as you remember enough elementary combinatorics to avoid trying to produce an
impracticable or impossible graph.

We will use the sj scheme standard for the Stata Journal and auto.dta bundled
with Stata.

. set scheme sj

. sysuse auto
(1978 Automobile Data)

A small piece of foresight—benefiting from the hindsight given by earlier attempts
excised from public view—is now to save a variable label that would otherwise disappear
on reduction. In this example, we could also just type in the label or some other suitable
text afterward. But if you try something similar yourself, particularly if you want to
automate the production of several graphs, the small detail of saving text you want as
a graph title may avoid some frustration.

. local xtitle "`: var label mpg´"
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Our call to statsby spells out that we want five quantiles, the median, two quartiles,
and two extremes. summarize, detail does that work. Because summarize is an r-
class command, we need to look up the codes used, either by reverse engineering from
the results of return list or by looking at the command help or the manual entry.

The principle with an e-class command is identical, except that we would reverse
engineer from ereturn list. If this detail on r- and e-class results goes beyond your
present familiarity, start at help saved results and follow the documentation pointers
there if and as desired.

We are subdividing auto.dta by the categorical variables foreign and rep78, but
with a twist given by the subsets option. Another useful option—in practice, probably
even more useful—is to use the total option to add results for the whole set.

. statsby p50=r(p50) p25=r(p25) p75=r(p75) min=r(min) max=r(max),
> by(foreign rep78) subsets total: summarize mpg, detail
(running summarize on estimation sample)

command: summarize mpg, detail
p50: r(p50)
p25: r(p25)
p75: r(p75)
min: r(min)
max: r(max)
by: foreign rep78

Statsby subsets
1 2 3 4 5

................

Let us look at the results. To emphasize the key point: This is a reduced dataset
and the original dataset is gone, although overwriting is avoidable through saving().
We have results for all combinations of foreign and rep78 that exist in the data; for
all categories of foreign and for all categories of rep78; and for all observations.

(Continued on next page)
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. list

foreign rep78 p50 p25 p75 min max

1. Domestic 1 21 18 24 18 24
2. Domestic 2 18 16.5 23 14 24
3. Domestic 3 19 16 21 12 29
4. Domestic 4 18 15 21 14 28
5. Domestic 5 32 30 34 30 34

6. Domestic . 19 16 22 12 34
7. Foreign 3 23 21 26 21 26
8. Foreign 4 25 23 25 21 30
9. Foreign 5 25 18 35 17 41
10. Foreign . 25 21 28 17 41

11. . 1 21 18 24 18 24
12. . 2 18 16.5 23 14 24
13. . 3 19 17 21 12 29
14. . 4 22.5 18 25 14 30
15. . 5 30 18 35 17 41

16. . . 20 18 25 12 41

Plotting that data directly would produce a reasonable working graph. Largely
as a matter of personal taste, I chose to reorganize and edit the data slightly to get
something more attractive. First, I wanted all two-group categories together, then all
one-group categories, and then all the data. The number of groups in each category
is the complement of the number of missing values of the first two variables in each
observation or row, so that can be calculated by counting missing values in each row
and sorting accordingly. The stable option minimizes departure from the present sort
order.

. egen order = rowmiss(foreign rep78)

. sort order, stable

To get group labels, I combine the value labels (where used) and the values (other-
wise) with egen’s concat() function, and I remove the periods indicating missing and
any marginal spaces:

. egen label = concat(foreign rep78), decode p(" ")

. replace label = trim(subinstr(label, ".", "", .))
(8 real changes made)

The total category for results for all observations deserves due prominence:

. replace label = "Total" in L
(1 real change made)

The final detail of preparation is to use a couple of helper programs to set up one
axis variable with gaps and to map the values in the label variable to the value labels
of that axis variable:
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. seqvar x = 1/5 7/9 11/12 14/18 20

. labmask x, values(label)

For more details on seqvar and labmask, see Cox (2008).

Now we assemble the box plot from ingredients produced by members of the twoway
family. rspike draws spikes between each quartile and each tailward extreme. rbar
draws boxes between the quartiles. scatter draws point symbols showing the medians.
The result is shown in figure 1. At this point, we use the title carefully stored in a local
macro before the call to statsby.

. twoway rspike min p25 x, horizontal bcolor(gs12) ||
> rspike p75 max x, horizontal bcolor(gs12) ||
> rbar p25 p75 x, horizontal barw(0.8) bcolor(gs12) ||
> scatter x p50, ms(O) yla(1/5 7/9 11/12 14/18 20, val nogrid noticks ang(h))
> legend(off) ysc(reverse) xtitle(`xtitle´)

Domestic 1
Domestic 2
Domestic 3
Domestic 4
Domestic 5

Foreign 3
Foreign 4
Foreign 5

Domestic
Foreign

1
2
3
4
5

Total

 

10 20 30 40
Mileage (mpg)

Figure 1. All subsets box plot of mileage for 78 cars by domestic or foreign origin,
repair record in 1978, and combinations thereof. Spikes extend to extremes, boxes show
quartiles, and circles show medians.

Beyond question, the statistical and stylistic choices here of what to show and how to
show it are all arguable and variable. However, that is not the main point. Rather, you
should appreciate how statsby with its subsets and total options made a different
kind of plot much easier.

(Continued on next page)
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4 Confidence-interval plots

Plotting confidence intervals for some group statistic, such as the mean, is another
common application. The basic trick, which now starts to look fairly obvious, is to use
a command such as ci (see [R] ci) under the aegis of statsby to produce a reduced
dataset that is then ready for graphics.

We read in the U.S. National Longitudinal Survey data available from Stata’s web
site. We will look at the relationship between wage (on an adjusted logarithmic scale)
and highest education grade.

. webuse nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

Saving the variable label is a trick we saw before. At worst, it does no harm.

. local ytitle "`: var label ln_wage´"

ci is our workhorse. The default gives 95% confidence intervals, but evidently other
choices may suit specific purposes. As the dataset is panel data, we need to decide
how far to respect its structure. One of several possible approaches is to select one
observation from each panel randomly (but reproducibly). In addition to estimates and
confidence intervals, we save the sample sizes, which are a key part of the information.

. set seed 2803

. generate rnd = runiform()

. bysort idcode (rnd): generate byte select = _n == 1

. statsby mean=r(mean) ub=r(ub) lb=r(lb) N=r(N) if select, by(grade) clear:
> ci ln_wage
(running ci on estimation sample)

command: ci ln_wage if select
mean: r(mean)

ub: r(ub)
lb: r(lb)
N: r(N)
by: grade

Statsby groups
1 2 3 4 5

(2 missing values generated)
...................

Here the grades run over all the integers 0/18, but levelsof (see [P] levelsof)
simplifies capture for later graphical use of all values that occur, especially in more
complicated cases.

. levelsof grade, local(levels)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A basic plot is now at hand. Using scatter for the means and rcap for the intervals
themselves is widely conventional. A delicate detail is that means on top of intervals
look better than the converse. The result is shown in figure 2.
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. twoway rcap ub lb grade || scatter mean grade, yti(`ytitle´) legend(off)
> subtitle(95% confidence intervals for mean, place(w)) xla(`levels´)
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Figure 2. Graph of 95% confidence intervals of mean adjusted log wage by education
grade.

The graph can be improved in various minor cosmetic ways and also by showing
sample sizes. After some experimenting, the method for the latter was refined to showing
sizes as marker labels on a horizontal line. Horizontal alignment of those labels would
have been preferable, except that they then would run into one another. Exchanging
axes so that grade is plotted vertically seems too awkward for this kind of data. In other
circumstances, exchanging axes might well be a good idea. Thus the vertical alignment
here is regarded as the lesser of two evils. Figure 3 shows the result.

. generate where = 2.7

. twoway rcap ub lb grade || scatter mean grade, yti(`ytitle´) legend(off)
> subtitle(95% confidence intervals for mean, place(w)) xla(`levels´)
> || scatter where grade, ms(none) mla(N) mlabangle(v) mlabpos(0) ysc(r(. 2.8))
> yla(0(.5)2.5, ang(h))

(Continued on next page)
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Figure 3. Graph of 95% confidence intervals of mean adjusted log wage by education
grade. Text labels show sample sizes at each grade.

5 Conclusions

This column has promoted one simple idea, using statsby to prepare a reduced dataset
for subsequent graphing. Its subsets and total options allow useful variations on the
default. You might still need to do some further work to get a good graph, but the
overall labor is nevertheless likely to be much reduced. The method is widely applicable
in so far as any calculation can be represented by a program as yielding r-class or e-class
results.
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merge is one of Stata’s most important commands. Without specific instructions
to the contrary, merge holds the master data file inviolate. Its variables are neither
replaced nor updated. Variable and value labels are retained. All these properties and
more are well documented. What is not so well documented is how merge interacts with
Stata’s multiple language support (label language), added in Stata 8.1 and described
in Weesie (2005). In essence, Stata users must pay careful attention to which languages
are defined and current when merging files.

The language feature is useful not only for multiple “real” languages (e.g., English
and French) but also for using different sets of labels for different purposes, such as
short labels (“Mines”) and long (“Non-Metallic and Industrial Metal Mining”) in one
data file. merge may generate unexpected results if attention is not paid to the language
definitions and, in particular, the current language in each file. Multilingual datasets
to be merged should be defined with common languages and each should have the same
language set as the current language.

I illustrate using auto.dta. Starting with autotech.dta, create a new dichotomous
variable, guzzler, defined as mpg < 25, label the variable and its values in English
(en) and French (fr), and save to a file called tech.dta. The tabulations below display
variable and value labels:

. label language en

. tabulate guzzler

Gas Guzzler Freq. Percent Cum.

No 19 25.68 25.68
Yes 55 74.32 100.00

Total 74 100.00

. label language fr

. tabulate guzzler

Verte Freq. Percent Cum.

Oui 19 25.68 25.68
Non 55 74.32 100.00

Total 74 100.00

c© 2010 StataCorp LP dm0046
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From auto.dta, create an English-labeled file, origin.dta. Now merge in tech.dta
and tabulate guzzler and foreign:

. tabulate guzzler foreign

Car type
Verte Domestic Foreign Total

Oui 8 11 19
Non 44 11 55

Total 52 22 74

foreign is labeled in English, but guzzler is labeled in French. How did that
happen? The label language and labelbook commands can clarify:

. label language

Language for variable and value labels

In this dataset, value and variable labels have been defined in only one
language: en

(output omitted )

. labelbook

value label origin

(output omitted )

definition
0 Domestic
1 Foreign

variables: foreign

value label yesno_en

(output omitted )

definition
0 No
1 Yes

variables:

value label yesno_fr

(output omitted )

definition
0 Oui
1 Non

variables: guzzler

(output omitted )
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On reflection, this is what we might have expected. The master dataset is inviolate
in the sense that its language—English (and only English)—is preserved. The using
dataset has two languages, but only the labels from the current language (French) are
attached to the single language (English) in the master dataset.

We could, of course, redefine our languages and reattach the appropriate labels.
However, if we plan to merge our master file with a multilingual dataset, a better
strategy is to prepare the master file by defining the same two languages and then
merge. It is crucial that the current languages are the same in both files. To illustrate,
add French labels to origin.dta. Then consider what happens if the current languages
differ. Suppose that the current language in the master file (origin.dta) is French,
but the current language in the using file (tech.dta) is English. Then the labels from
the current language in the using file (English) are attached in the current language of
the master file (French), and the French labels (noncurrent) from the using file are not
attached at all:

. label language fr
(fr already current language)

. tabulate guzzler foreign

Gas Origine
Guzzler USA Autre Total

No 8 11 19
Yes 44 11 55

Total 52 22 74

. label language en

. tabulate guzzler foreign

Car type
guzzler Domestic Foreign Total

0 8 11 19
1 44 11 55

Total 52 22 74

Although we could of course correct the labels afterward, it is easier to make sure
that the files are consistent before the merge. If we set the current language to English
(or French) in both files before merging, we see that the labels are properly attached:

. label language en
(en already current language)

. tabulate guzzler foreign

Gas Car type
Guzzler Domestic Foreign Total

No 8 11 19
Yes 44 11 55

Total 52 22 74

. label language fr
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. tabulate guzzler foreign

Origine
Verte USA Autre Total

Oui 8 11 19
Non 44 11 55

Total 52 22 74

Whether or not the labels are properly attached, merge does preserve them. But a
little planning in advance will ensure that they are attached in the way you expect.

In passing, it is worth noting that the situation is more complex if there are no
languages defined in the master file. In that case, issuing a label language statement
changes the behavior of merge. First, let’s see what happens if we ignore the language
of the master file. Thus we start with the original autotech.dta and merge in the
multilingual origin.dta. We see that two languages have been defined, and the labels
are properly attached:

. webuse autotech, clear
(1978 Automobile Data)

. merge 1:1 make using origin, nogenerate

(output omitted )

. tabulate foreign

Car type Freq. Percent Cum.

Domestic 52 70.27 70.27
Foreign 22 29.73 100.00

Total 74 100.00

. label language fr

. tabulate foreign

Origine Freq. Percent Cum.

USA 52 70.27 70.27
Autre 22 29.73 100.00

Total 74 100.00

If before merging, however, we check that the master file’s only language is the
default, we get different results:

. webuse autotech, clear
(1978 Automobile Data)

. label language

Language for variable and value labels

In this dataset, value and variable labels have been defined in only one
language: default

(output omitted )
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. merge 1:1 make using origin, nogenerate

(output omitted )

. label language

Language for variable and value labels

In this dataset, value and variable labels have been defined in only one
language: default

(output omitted )

In this case, only the default language is defined. Tabulation of foreign indicates
that labels are attached from only the current language in the using file. The reason
is that issuing the label language command sets the characteristics that define the
current language and all available languages. merge then declines to overwrite those
characteristics with characteristics from the using dataset. If they are as yet undefined,
however, those characteristics are taken from the using language.

Reference
Weesie, J. 2005. Multilingual datasets. Stata Journal 5: 162–187.
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Stata tip 84: Summing missings
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Consider this pretend dataset and the result of a mundane collapse:

. list, sepby(g)

g y

1. 1 1
2. 1 2
3. 1 3
4. 1 4

5. 2 5
6. 2 6
7. 2 7

8. 3 8
9. 3 .

10. 4 .

. collapse (sum) y, by(g)

. list

g y

1. 1 10
2. 2 18
3. 3 8
4. 4 0

Here we have a grouping variable, g, and a response, y. When we collapse, by(g)
to produce a reduced dataset of the sums of y, many users are surprised at the results.
Clearly 1+2+3+4 = 10 and 5+6+7 = 18, so no surprises there, but the other results
need more comment.

When producing sums, Stata follows two specific rules:

1. Initialize the result at 0 and add pertinent numbers one by one until done. The
result is the sum.

2. Ignore missings.

c© 2010 StataCorp LP dm0047
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With these two rules, it should not surprise you that the sum 8+. is reported as 8 (the
missing is ignored) or that the sum of . is reported as 0 (the missing is ignored, and we
just see the result of initializing, namely, 0).

Nevertheless, many users see this reasoning as perverse. A counterargument runs
like this: If we know that all values in a group are missing, then we know nothing about
their sum, which should also be recorded as missing. Users with this view need to know
how to get what they want. They should also want to know more about why Stata
treats missings in this way.

Consider a related problem: What is the sum of an empty set? Stata’s answer to the
problem is best understood by extending the problem. Imagine combining that empty
set with any nonempty set, say, 1, 2, 3. What is the sum of the combined set? The
Stata answer is that as

sum of empty set + sum of 1, 2, 3 = sum of combined set 1, 2, 3

so also the sum of an empty set must be regarded as 0. Sums are defined not by what
they are but by how they behave. Insisting that the sum of an empty set must be
missing prevents you from ever combining that result helpfully with anything else.

This problem, which was dubbed “related”, is really the same problem in Stata’s
mind. Because missings are ignored, it is as if they do not exist. Thus a set of values
that is all missing is equivalent to an empty set.

If you look carefully, you will find this behavior elsewhere in Stata, so it should be
less of a surprise. summarize (see [R] summarize) will also report the sum of missings
as zero:

. sysuse auto, clear
(1978 Automobile Data)

. summmarize rep78 if rep78 == .

Variable Obs Mean Std. Dev. Min Max

rep78 0

. return list

scalars:
r(N) = 0

r(sum_w) = 0
r(sum) = 0

The sum (and sum of weights) is not explicit in the output from summarize, but it is
calculated on the side and put in r-class results.

egen (see [D] egen) functions total() and rowtotal() by default yield 0 for the
total of missings. However, as from Stata 10.1, they now have a new missing option.
With this option, if all arguments are missing, then the corresponding result will be set
to missing.
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Mata has an explicit variant on empty sets, e.g.,

. mata: sum(J(0,0,.))
0

. mata: sum(J(0,0,42))
0

Whenever this behavior does not meet your approval, you need a work-around.
Returning to the first example, one strategy is to include in the collapse enough
information to identify groups that were all missing. There are several ways to do this.
Here is one:

. collapse (sum) y (min) min=y, by(g)

. list

g y min

1. 1 10 1
2. 2 18 5
3. 3 8 8
4. 4 0 .

. replace y = . if missing(min)
(1 real change made, 1 to missing)

. list

g y min

1. 1 10 1
2. 2 18 5
3. 3 8 8
4. 4 . .

The idea here is that the minimum is missing if and only if all values are missing. Using
missing(min) as a test also catches any situation in which the smallest missing value
is one of .a–.z.

Missings pose problems for any mathematical or statistical software, and it is difficult
to design rules that match all users’ intuitions. Indeed, some intuitions are changed by
becoming accustomed to certain rules. Stata’s philosophy of ignoring missings where
possible contrasts with software in which missings are regarded as highly infectious,
affecting whatever operations they enter. Here is not the place to debate the merits and
demerits of different choices in detail but rather to underline that Stata does attempt to
follow rules consistently, with the consequence that you need a work-around whenever
you disagree with the outcome.
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Stata tip 85: Looping over nonintegers
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A loop over integers is the most common kind of loop over numbers in Stata pro-
gramming, as indeed in programming generally. forvalues, foreach, and while may
be used for such loops. See their manual entries in the Programming Reference Manual
for more details if desired. Cox (2002) gives a basic tutorial on forvalues and foreach.
In this tip, I will focus on forvalues, but the main message here applies also to the
other constructs.

Sometimes users want to loop over nonintegers. The help for forvalues contains
an example:

. forvalues x = 31.3 31.6 : 38 {
2. count if var1 < `x´ & var2 < `x´
3. summarize myvar if var1 < `x´
4. }

It is perfectly legal to loop over such a list of numbers, because forvalues allows
any arithmetic progression as lists, with either integer or noninteger constant difference
between successive terms. However, such lists can cause problems. On grounds of
precision, correctness, clarity, and ease of maintenance, the advice here is to use loops
over integers whenever possible.

The precision problem is exactly that explained elsewhere (Cox 2006; Gould 2006;
Linhart 2008). Stata necessarily works at machine level in binary, and so it does no
calculations in decimal. Rather, it works with the best possible binary approximations
of decimals and then converts to decimal digits for display. Not surprisingly, users often
think in terms of decimals that they want to use in their calculations or display in
their results. Commonly, the conversions required work well and are not detectable,
but occasionally users can get surprising results. Here is a simple example:

. forvalues i = 0.0(0.05)0.15 {
2. display `i´
3. }

0
.05
.1

The user evidently expects display of 0, .05, .1, and .15 in turn, but the loop ends
without displaying .15. Why is that? First, let us fix the loop by looping over integers
and doing the noninteger arithmetic inside the loop. That is the most important trick
for attacking this kind of problem.

c© 2010 StataCorp LP pr0051
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. forvalues i = 0/3 {
2. display `i´ * .05
3. }

0
.05
.1
.15

Why did that work as desired, but not the previous loop? The default format for
display is hiding from us the approximations that are being used, which are necessary
because most multiples of 1/10 cannot be held as exact binary numbers. A format with
many more decimal places reveals the problem:

. forvalues i = 0/3 {
2. display %20.18f `i´ * .05
3. }

0.000000000000000000
0.050000000000000003
0.100000000000000006
0.150000000000000022

The result 0.150000000000000022 is a smidgen too far as far as the first loop is concerned.
Otherwise put, the loop terminates because Stata’s approximation to 0.05+0.05+0.05
is a smidgen more than its approximation to 0.15:

. display %20.18f 0.05 + 0.05 + 0.05
0.150000000000000022

. display %20.18f 0.15
0.149999999999999994

A little more cryptic, but closer to the way that Stata actually works, is a display
in hexadecimal:

. display %21x 0.05 + 0.05 + 0.05
+1.3333333333334X-003

. display %21x 0.15
+1.3333333333333X-003

The difference really is very small, but it is enough to undermine the intention behind
the original loop.

Another trick that is sometimes useful to ensure desired results is the formatting of
numerical values as desired. Leading zeros are often needed, and for that we just need
to insist on an appropriate format:

(Continued on next page)



162 Stata tip 85

. forvalues i = 1/20 {
2. local j : display %02.0f `i´
3. display "`j´"
4. }

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

A subtlety to notice here is the pair of double quotes flagging to display that the
macro j is to be treated as a string. Omitting the double quotes as in display ‘j’
would cause the formatting to be undone, because the default (numeric) display format
would produce a display that started 1, 2, 3, and so forth. The syntax here for producing
the local j is called an extended macro function and is documented in [P] macro.

If all that was desired was the display just seen, then the loop could be simplified
to contain a single statement in its body, namely,

. display %02.0f `i´

However, knowing how to produce another macro with this technique has other benefits.
One fairly common example is for cycling over filenames. Smart users know that it is
a good idea to use a sequence of filenames such as data01 through data20. Naming
this way ensures that files will be listed by operating system commands in logical order;
otherwise, the order would be data1, data11, and so forth. But those smart users then
need Stata to reproduce the leading zero in any cycle over files. The loop above could
easily be modified to solve that kind of problem by including a command such as

. use data`j´

Correctness, clarity, and ease of maintenance were also mentioned as advantages
of looping over integers. Style preferences enter here, and programmers’ experiences
vary, but on balance fewer coding errors and clearer code overall seem likely to result
from the approach here. Moreover, noninteger steps, such as .05 within the very first
example, are rarely handed down from high as the only possibilities. There is a marked
advantage to changing just a single constant rather than a series of values from problem
to problem.
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Software Updates

gr0009 1: Speaking Stata: Graphing model diagnostics. N. J. Cox. Stata Journal 4:
449–475.

Various updates have been made to programs and documentation. The most impor-
tant are, first, a new command rbinplot for plotting means or medians of residuals
by bins; second, new options for smoothing using restricted cubic splines where ap-
propriate, for users of Stata 10 and later; third, documentation of anova examples
using the new syntax introduced in Stata 11.

gr0021 1: Speaking Stata: Smoothing in various directions. N. J. Cox. Stata Journal
5: 574–593.

Various updates have been made to programs and documentation. An option to
carry out smoothing using restricted cubic splines has been added to doublesm and
diagsm. References to earlier work have been added to the help for doublesm and
polarsm.

gr41 4: Distribution function plots. N. J. Cox. Stata Journal 5: 471; Stata Journal 3:
449; Stata Journal 3: 211; Stata Technical Bulletin 51: 12–16. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 108–112.

A reverse(ge) option added to the distplot program specifies the plotting of
probabilities or frequencies of being greater than or equal to any data value. This
allows plotting of such probabilities or frequencies on a logarithmic scale, as all
calculated quantities will be positive.
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