Conferencias plenarias
Fernando Alcalde (joint work with Françoise Dal'Bo, Matilde Martínez, and Alberto Verjovsky)
Dynamics of the horocycle flow for homogeneous and non-homogeneous foliations by hyperbolic surfaces.
Congreso: Workshop Geometry and Dynamics of Foliations (Foliations 2014)
ICMAT, Madrid. September 1-5, 2014
Abstract:
Fernando Alcalde
Insertion-tolerance and local isomorphism property for random graphs
Abstract: Any graphed equivalence relation produces a random rooted graph in the sense of Aldous and Lyons, that is, a random variable with values in the space of isomorphism classes of locally finite rooted graphs. We replace this space with the Gromov-Hausdorff space associated with the Cayley graph G of a finitely generated infinite group. This compact (ultra)metric space is endowed with a continuous graphed equivalence relation defined by root moving. Since these two spaces are related by a natural non-expansive map, any random rooted graph with values in G is an example of random rooted graph as defined by Aldous and Lyons. For the abelian free group on two generators, Ghys constructed an unimodular random rooted subtree of G as the continuous hull of a rigid repetitive subtree of G. Other examples of unimodular random rooted graphs obtained from repetitive subgraphs of Cayley graphs are due to Blanc and Lozano Rojo. We show that the continuous hull of any repetitive subgraph in G is negligible for any group-invariant insertion-tolerant bond percolation process on G in the non-trivial supercritical phase. In collaboration with Álvaro Lozano Rojo and Antón C. Vázquez Martínez.
Congreso: Random walks on groups
Amphithéâtre Hermite, Paris. 27 al 31 de enero de 2014
Trabajo conjunto con Á. Lozano Rojo y A. C. Vázquez Martínez
Autores:: H. Nozawa, J.I. Royo Prieto.
Título: Tenseness of Riemannian flows
Congreso: Knots, Manifolds, and Group Actions.
Lugar:Slubice (Polonia)
Año: septiembre 2013